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Optical solitary waves in two- and three-dimensional nonlinear photonic band-gap structures
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We present a detailed analysis of finite energy solitary waves in two- and three-dimensional nonlinear
periodic structures exhibiting a complete photonic band gap. Solitary waves in photonic crystals with a two-
dimensionak2D) square and triangular symmetry group as well as a 3D fcc symmetry group are described in
terms of an effective nonlinear Dirac equation derived using the slowly varying envelope approximation for the
electromagnetic field. Unlike one-dimensional Bragg solitons, the multiple symmetry points of the 2D and 3D
Brillouin zones give rise to two distinct classes of solitary wave solutions. Solutions associated with a higher
order symmetry point of the crystal exist for both positive and negative Kerr nonlinearities, whereas solutions
associated with a twofold symmetry point occur only for positive Kerr coefficient. Using a variational method
we derive the important physical features such as the size, shape, peak intensity, and total energy of the solitary
waves. This is then confirmed numerically using the finite element Ritz-Galerkin method. It is shown that the
initial variational method and the finite element numerical method are in good agreement. We discuss the
stability of these solitary waves with respect to small perturbations. It is suggested that an analytical stability
criterion for spinor fields satisfying the nonlinear Dirac type of equation may exist, similar to the well known
stability criterion for solitary waves in the nonlinear Scflimger equation. Our stability criterion correctly
reproduces the stability conditions of other nonlinear Dirac type of equations which have been studied numeri-
cally. Our study suggests that for an ideal Kerr medium, two-dimensional solitary waves in a band gap are
stable, whereas three-dimensional ones are stable only in certain regions of tf@1§R-651X98)05401-4

PACS numbds): 42.65.Tg, 42.70.Qs

I. INTRODUCTION given by de Sterke and Sidé€]. In the continuous wave
(CW) limit, optical switching[8] and bistability[9] have

Electromagnetic wave propagation and localization inbeen experimentally demonstrated. Most recently the genera-
nonlinear periodic structures has been the subject of considion and propagation of gap solutions were observed by Egg-
erable activity over the last decade. The stationary propertiegton et al. [10].
of one-dimensiona{l1D) Bragg gratings were first analyzed  Gap solitons are in some ways similar to optical fiber
by Winful, Marburger, and Garmirgl], who showed that solitons[11]. They are both formed by the balance between
these structures exhibit bistable optical transmission behavhe group velocity dispersiofGVD) and the nonlinearity of
ior. The term “gap soliton” was introduced by Chen and the medium. When an optical pulse propagates through a
Mills [2] in subsequent numerical work. This terminology nonlinear medium, it gains an additional intensity-dependent
was based on the fact that the electric field envelope functiophase due to the nonlinear index of refraction, referred to as
inside the medium resembles a hyperbolic secant, reminisself-phase modulation. In a medium with positive nonlinear-
cent of solitary wave solutions of other well known nonlinearity, the phase modulation causes the leading edge of the
wave equations, such as the nonlinear Sdimger equation pulse to be redshifted, while the trailing edge is blueshifted.
obtained in the propagation of optical solitons in fibE8$ In general, a pulse propagating in a linear dispersive medium
An analytical solution was obtained for stationary gap soli-will spread. A material in which the GVD parameter
tary waves by Mills and Trullingef4]. These authors de- B,= (d/dw) (1/v,) is negative is said to exhibit anomalous
rived the existence of one-dimensional self-localized soludispersion. Here 4 is the group velocity at frequenay. In
tions of the optical field throughout the band gap of a 1Dthe anomalous dispersion regime, the leading edge of the
Bragg grating for both positive and negative nonlinear Kerrpulse is blueshifted, while the trailing edge is redshifted.
coefficients. They showed that the phase modulation of th&hen both GVD and nonlinearity are present in the medium,
gap solitons satisfies the double sine-Gordon equation, whictinen, under certain conditions, these two effects can cancel
has kink type solutions. The electric field amplitude of theireach other, resulting in a pulse which propagates without
solution is a localized function with a more complex struc-changing its shape. In the appropriate limit, both fiber soli-
ture than a simple hyperbolic secant function. A general anatons and solitary waves in a Bragg grating can be described
lytical solution to the time-dependent 1D nonlinear opticalby a nonlinear Schidinger equation. The difference is that
gap soliton problem was obtained by Aceves and Wabnitzhe GVD in fibers is mainly due to the material dispersion
[5], using an analogy with the massive Thirring mo&). (frequency-dependent refractive indewhereas in the latter,
Unlike the integrable Thirring model, the optical coupled GVD is due to the periodic variation in the linedrequency
mode equations for a Bragg grating are not integrable, anthdependentdielectric constant. The latter variation is many
the gap solutions are not truly solitons but rather solitaryorders of magnitude larger than the dispersive variation in
waves. A useful review of one-dimensional gap solitons wadibers. Unlike the fiber soliton which experiences only self-
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phase modulation, the gap soliton experiences additiondkrconnect containing an active region, optical fiber solitons
cross-phase modulation with light that is Bragg scattered bynay be reshaped, amplified, or otherwise processed. The ef-
the grating. Another difference is that gap solitons may attairdiciency of these processes is greatly enhanced by virtue of
any velocity between zero and the average speed of light ithe inhibition of spontaneous emission by the PBG structure.
the medium, whereas fiber solitons travel only with the av-Recently, Gbay et al. [24] constructed a three-dimensional
erage speed of light in the medium. Despite these differstructure with a PBG at around 100 GHz. The existence of
ences, the optical coupled mode equations in a photoniphotonic band gaps in two dimensions has been demon-
band-gagPBG) material can be reduced to an effective non-strated both theoreticallj25-27 and experimentally in the
linear Schrdinger equation for the electric field envelope microwave regimg28,29. In the optical regime, fabrication
function when the optical frequency is near one of the pho-of two-dimensional periodic structures has proved to be
tonic band edges. The soliton arising in pulse propagation imuch more straightforward. Such structures have been fab-
fibers is usually referred to as a temporal soliton, whereas ificated on a small scale in the optical regime for squacg
the PBG material it is a spatial soliton. Optical solitons haveand triangular lattice$2.5—1.1um) [31]. Very large array,
received tremendous interest for their technological applicagp square and triangular lattice PBG's, in theuf range,
tions in the area of optical fiber communications and phototaye been demonstrated in macroporous silicon byn@gu
nic switching[12]. _ _ o et al.[32]. These latter structures are easily fabricated using
Qualitatively similar considerations arise in the problemne self-organizing property of columnar voids in Si under
of steady(CW) beam propagation in a medium with a self- g jjtaple electrochemical etching conditions. Most recently,

focusing Kerr nonlinearity. When a CW beam propagates, e scale 3D PBG structures on the optical scale have been

through a nonlinear medium, the nonlinear effect can balanc -
: . ! emonstrated using infiltrated op&a3]. In these systems a
the diffraction of the beam, such that the beam can trave? g P4ES] Y

without changing its transverse profil&3]. In a 3D geom- close-packed fcc lattice of Sg&pheres with diameter on the

etry this soliton is unstable to perturbations. However, in anicron scale is infiltrated with a high refractive index mate-

2D system, where diffraction is allowed in only one trans_rlal such as diamond or silicd34]. The higher index mate-

verse dimension due to linear confinement in the other trandi@! fills the interstitial regions between the SiGpheres,
verse direction, the beam can propagate through the mediufR'Ming & connected solid network. The SiGpheres are
without changing its shape. The nonlinear Sdimger equa- then removed by chemical etching, leaving behind a PBG
tion that governs this solitary wave follows from interpreting crystal with a complete 3D ga85].
the time variable as the spatial propagation direction. Unlike their 1D counterparts, 2D solitary waves are local-
The linear electromagnetic band structures of periodic diized in two spatial dimensions. Another difference is the ex-
electric structures have been extensively studied recentligtence of multiple symmetry points in the 2D Brillouin zone
[14]. Frequency gaps have been demonstrated in 2D and 3(BZ). This gives rise to new types of solitary waves that have
systems in which there are no propagating solutions of th@o analog in one dimension. In general, there are two spe-
Maxwell's equations for a medium with a real positive re- cific symmetry points in BZ's which determine the upper and
fractive index. This picture changes significantly if the me-lower band edges of the full photonic band gap. We define
dium also exhibits a Kerr nonlinearity in which the dielectric the order of the symmetry point by the total number of such
constant is intensity dependent. As the intensity of the inpoints that are connected to each other by reciprocal lattice
coming radiation with frequency inside the gap is increasedyectors of the photonic crystal. One of théosually a two-
it is possible for the underlying dispersion relation to changeold symmetry poink gives rise to a solitary wave with low
locally, and for the incoming light pulse to tune itself outside symmetry, whereas the higher order point gives a solitary
the band-gap region by locally deforming the band structurewave with higher symmetry. We find that the low symmetry
and to propagate through the medium. Nearly all work so fasolution exists only for positive Kerr coefficient, whereas
has been done on one-dimensional structures. Recently, wegher symmetry solutions may exist for both negative and
have shown that localized finite energy solitary waves exispositive Kerr coefficient. The underlying nonlinear electro-
inside the photonic band gap of a two-dimensional periodianagnetic wave equation can be reduced, using the slowly
structure[15]. In one-dimensional photonic band gaps, thevarying envelope approximation to a nonlinear Dirac type of
propagation of light is only forbidden over a very small frac- equation where the number of components of the slowly
tion of k space. Three-dimensional periodic structures withvarying spinor field depends on the order of the symmetry
nonoverlapping gaps in different directions were studied bypoint about which the electric field is expanded. In general
Ohtaka[16]. A complete band gap of a three-dimensionalthe solitary wave can be described as a localized amplitude
periodic medium with the point group symmetry of a fcc function accompanied by a self-phase modulation kink in the
lattice was independently suggested by JdHY] and  direction of the Bragg scattering.
Yablonovitch[18]. Potential applications of these structures In this paper, we derive solitary wave solutions for 2D
for optical filters, pulse compressi¢h9], zero-threshold mi- square and triangular lattices, and the 3D fcc lattice. As in
crolaserq20], and all-optical transistofi21] have been pro- the 1D case, near the photonic band edges it is possible to
posed. Although three-dimensional PBG materials have beesstablish an analogy between the effective nonlinear electro-
fabricated in the microwave reginj@0], the ultimate goal is magnetic wave equation and the equation for a particle mov-
to obtain complete gaps in the visible spectrum and neaing in a classical potential well. This analogy furnishes an
infrared (1.5 um) for applications such as optical intercon- existence proof for the higher-dimensional solitary waves.
nects, all-optical amplifiers, and wavelength demultiplexerdJnlike the one-dimensional case, where an exact analytical
[22,23 in the telecommunication industry. Using a PBG in- solution exists throughout the PBG, in higher dimensions,
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simple solutions can be obtained only near the photonic band Square Lattice First Brillouin Zone
edges where the “effective mass approximation” for the
photon dispersion is valid. For a general frequency within ky

the gap one must use numerical or approximate methods. Wk
have introduced a variational method which recaptures most ‘ ‘ . ‘

of the important physics of these 2D and 3D solitary waves.

First we test the accuracy of our variational method by ap- . ' ‘ .
plying it to the 1D case. This yields excellent qualitative r X K

agreement with the exact solution of Mills and Trullinger

[4]. In order to generalize the variational ansatzdorl1, we ' . . ‘
use the Ritz-Galerkin numerical method based on the expan:;

sion of the solitary wave in terms of a suitable set of eigen- . ‘ ‘ ‘
functions. In one dimension we show that by retaining suf-
ficient terms in this finite element expansion the solution 5 1 Top view of a 2D square lattice PBG structdegt) in
converges to the exact solution for the entire band-gap rene (x,y) plane. The medium is assumed to be homogenous ia the

gion. Ind>1, we include more terms in the expansion until girection. The dark circular spots represent a long circular rod with
there is no significant difference in the solution between twayielectric constank, embedded in a background medium with a

successive iterations. dielectric constantg. The first Brillouin zone(right) is labeled
Given the existence of 2D solitary waves, we then discuswith the corresponding symmetry point& (m/a,,0) and M

their stability with respect to small perturbations. In an ideal(w/a,,m/a,), wherea, is the lattice constant.

Kerr medium with no periodic modulation, it is well known

that solitary waves satisfying the nonlinear Salinger plied field. For the square lattice we choose the linear part of

equation(NLSE) are unstable fod>1. On the other hand, the dielectric constant to have the simple form

saturation effects of the nonlinear susceptibility tend to sta-

bilize solitary waves in all dimensions, as do the inclusion of e(r)=€+Ae[cogG;-r)+cogG,- )] (2.2

higher order derivative terni{86]. Materials exhibiting qua-

dratic nonlinearities are also known to exhibit stable solitarw\,hereélz (27T/a0)§< and (§2: (2w/a0)§/ are the reciprocal

\c/jv:r\i/\?s a];ogr?;r?orgsg; tLrJ1$ems§t]a§iI!It;eci‘rs%tﬁgligywzczléimti\gﬁs lattice vectors,e is average dielectric constant of the me-

of the nonlinear Dirac equation analogous to the criterion forici:g?éc?r;)?]%%iizhgz;gglgzgmtsﬁiﬂ; -L:g:ose:nt())adr?(lj ee);rggltsciﬂr_

the NLSE. For spinor fields with an unbounded negativé;, g ot the face centerq point) of the 2D BZ and the lower

spectrum, we show that the minimum property of the energy - nd edge occurring at the corn@ point) of the BZ. In

func_t|pnal is neither a necessary nor sufficient condition ,forFig. 1 we show a possible 2D square lattice structure with its
stability. We test our criterion on a number of models with : S

K tabilit tes. | h of th i corresponding Brillouin zone.

NOWN S ad ity ptrr?p?(r es. In eaﬁ Cc)) etzstej_l_(iase_st our Crité- - g slowly varying envelope approximatid8VEA) to
rion reproduces e known resuft. ur stability criteria Sug'Eq. (2.1 is obtained by expanding the electric field ampli-

gests that two-dimensional solitary waves in a PBG with §,46 apoyt the band edges. The field amplitude aktpeint
purely Kerr nonlinearity are stable throughout the gap re- - — (GI2)X] is connected to- K, by the reciprocal lattice
gion, whereas three-dimensional ones are stable only erko_ ~ o DY P

w>w¢, Wherewg, is the frequency at which there is a local vectorG,, leading to the expansion

minimum of the total energy as a function ef A similar . .- - . .

minimum point exists in the 3D nonlinear Sckinger equa- E(r,t)=(Ey(r,t)e* o "+ Ex(r,t)e Mo e "+ c.c.
tion with a saturable nonlinear index of refraction. (2.3

Here, we assume th&i; and E, vary slowly in time and
Il. SLOWLY VARYING ENVELOPE APPROXIMATION space on the scales ! and kgl, respectively. Substituting
Consider a two-dimensional periodic nonlinear dielectricEd. (2.3) into Eq.(2.1) with Eq. (2.2), we obtain two coupled
where the electric fiel and medium polarizatiod are ~€duations fo, andE; in the SVEA:
linearly polarized in_ thez dire(_:tion perpendicular to the JE JE.  &°E
plane of the 2D lattice. Denoting the component of the j—t4j——t4 "1
electric field byE, Maxwell's equations take the form of a 9t X gy?
scalar wave equation, _o, (2.43

+ 0B+ BE,+ § of |E4|2+ 2| Eo|2]E,

~ o3 5 -
3 e(r) 9°E(r,t) _4_77 d“PpL(r,1) o, UE, OE, &E, ) , ,
2 a2 2 at2 e v 7+6E2+'BE1+ £ o[ |E,|%+ 2|E4|%]E,
(2.1) y

V2E(r,t)

. — =0. (2.4b
where the nonlinear polarizatioRy, = x®|E|?E. Here we

assume that the nonlinear susceptibilif}?) is independent Here we have introduced the change variablez— X,
of r, and that medium responds instantaneously to the agsy—Y, w/w,— » and \/XEMH E12, 2w.t—t, so that Eq.
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(2.4) is dimensionless. The other parameters are defined dswer photonic band gaps becor‘nﬂzi(qx,qy)zl—4q§

w,=CGI2\e, B=AelSe, and \=97|yC)|/2e. 6=(w?

i4\/qx2+ B2. The Bragg condition is satisfied at the band

—1)/4 describes the detuning of the average soliton freedge defined byg|=0. The frequency gap at th€ point is

guency from the photonic midgap, aad=*+1 for positive-
negative nonlinearity. Strictly speaking, expans{@ar8) cor-
responds to a “nearly free photon approximation ” which is
valid when the periodic dielectric modulation is a weak per-

turbation to the vacuum wave equatioﬁe(<'§). In a real
PBG material A e is comparable te, and the carrier waves,

e '“=kT myst be replaced by Bloch functiori88] ob-
tained from a realistic band structure calculation. Neverthe-

the envelope function&, and E, is quite similar to that
obtained from Eq(2.3). Consequently, even for strong scat-
tering materials, we expect that E@.3) yields the important

determined by

(2.9

wM=\1+4p,

wherew” are the upper and lower band edge frequencies at
X. For a frequency within the gap regiofhj| becomes

imaginary, and linear wave propagation is exponentially
damped.

; \ Alternatively, we may consider a wave vector close to the
less, the overall structure of the solitary wave equation for, symmetry point allz(): (GI2) (X+9).

In this case there

are four components in the Fourier expansion of the electric
field which are resonantly coupled by reciprocal lattice vec-
tors of the photonic crystal. Accordingly, we expand the

underlying physics and qualitative properties of the SOIitaryelectric field about the four symmetry-relatit! points:

wave solutions. In the standard SVEA, we retain only first
order derivatives in space and time f&f and E,. Higher
derivative terms tend to become significant only for frequen-
cies deep within the PBG when the envelope function is
localized on the scale of the lattice constagt However,

whenAe<'e, Eq. (2.4) is valid throughout the gap region.
two-component spinor fiel? = (E} ,E3):

{id,+ dyy+iody+ 8+ Box+a (VW)

— (VT V)0, /3 ¥ =0 (2.5
Here, oy, , are the usual 22 Pauli matrices. Multiplying
Eq. (2.5 by ¥, adding the complex conjugate, and then
integrating over the transverse space variahléhe follow-
ing continuity equation can be obtained:

Jd dj
P9 _

b 0. (2.6)

Here the energy densityp=/dy(¥™¥)=[dy(|E,|?
+|E,|?), and the current densityj=/dy(¥To, V)

= [dy(|E1|?—|E,|?) describes the net power flow of the
solitary wave. Integrating E¢2.6) over x reveals that the
conserved quantitQ= fdxdy(¥ ") describes the total en-
ergy of the solitary wave within the PBG.

We first consider static solutions of Eq2.5) for which
¥=0 and E;=E}. In this case j=0. Writing
v'=(E*,E), Eq. (2.5 reduces to

[dyy+io,dy+ 8+ Boy+a(¥W)¥W=0. (2.7
The SVEA simplifies the true single photon band structure of
Eqg. (2.1)) to an approximate one. This approximate band
structure follows from Eq(2.7) by settinga=0 and consid-

ering solutions of the formP = ®e'd"", with ® independent

of r. The approximate one-photon dispersion relation is ob-
tained by setting the resultingX22 determinant equal to
zero:

[6—a.—ayl[ 5+ ax—ay]— B>=0. (29

Solving Eq.(2.8) for the detuning frequency, keeping only
terms of ordeiy?, the dispersion relations for the upper and

E(r,t) = (E,eo**Y) 4 E e~ o(x+Y) 1 E glko(x=¥)

(2.10

+E e Ko )eTioty ¢ ¢,

Substituting Eq(2.10 into Eg. (2.1) we obtain a set of four

Equation(2.4) can be succinctly rewritten in terms of a coupled nonlinear equations for the slowly varying envelope
functionsgq, E,, E3, andEy,:

JE, [ 4
— E;+(w?—2)E /4+ B(E3+E,)

P
i— +i| —+ —
at ax ' ay

2\
+ ?[|E1|2E1+ 2(|E,|?+|Esl?+|Eq|HE4

+2E3E4E,]=0, (2.113

iz (9, 90 2_2)E,l4+ B(E,+E
e |5+@ 2T (0°=2)E,/4+ B(E3+Ey)

2\
+ ?[|E2|2E2+ 2(|E4|*+|E3l*+|Eq?)E,

+2EYE3E,4]=0, (2.11b

iBs i[9 9\ 2_2)E./4+ B(E,+E
'7"" 5_@ 3t (w°—2)Es/4+ B(E1 +Ey)

2\
+ ?[|Es|253+ 2(|Eq|?+|Eo|*+|E4|*)E3

ot

OB, [0
IX

]
i| —— @) Es+ (0?—2)E4/4+ B(E;+Ey)

2\
+ ?[|E4|2E4+ 2(|E4|*+|Eo|*+|E3lH)E,

+2E3E,E,]=0. (2.1149
Equation(2.11) yield a similar continuity relation,
% %.7=0 2.1
S TV1=0 (212



57 OPTICAL SOLITARY WAVES IN TWO- AND THREE- ... 22901

where the energy densitp:|E}|2+ |AEz|2+||53|2+||54|2 ing Bragg scattered in the direction and the other in the
and the net power fluxj=j,x+j,y, with ix=|E4|> direction. In this case the electric field can be expanded as
—|Eg|?+|E3|?—|E4l? and jy:|E1|2_|E2|2_|E3|2

+|E4|?. Integration of Eq.(2.12 over x andy gives the E(r,t) = (E ek + E e~ oX+ Ezelko¥ + E o koY) g iot
conservation of the total ener@§y= fdx dy p of the solitar
N @=Jdx dyp y tec. .15

A particular solution of Eq(2.11) follows from setting
E,=E] andE,=Ej . In this case we may write the static
equations for the stationar( solitary wave in spinor
field notation by defining the four-componen®¥=

Inserting this expansion into E¢R.1) and using the SVEA,
we obtain the following coupled mode equations for the
static, compositeX soliton:

* * * *\.
(EI B3 ,E3,E}): OE; 0°E; 2 2
. |—+ ) +5E1+BE2+ZC¥[|E1| +2|E3| ]E]_:O,
{i(y19¢+ v20y) + Su+ Bys X gy
2.1
a3~ (WTy,¥) 7, W =0. (2.13 (2163
2
Here, we have performed the rescaling/2¥ —¥ and (0B, 0 2 2
; ——+ + SE,+ BE, + + =
Su=(w?—2)14. vy, v,, andy; are 4<4 matrices defined ' ox ay? OB+ BE1+ 20 |E|*+2|E4*]E,=0,
as (2.160b
oz O oz 0 0E;  0°Eg , ,
Y11= 0 o, V2= 0 -0, (214a |W+ 0’)X2 +5E3+BE4+26¥[|E3| +2|E1| ]E3:0,
(2.160
0 oyt I O
= Cov=lo _1], 14 Es OPE
V3Tl ol 0 va=lo -1, (214D —i&—y4+ - 2+ OB+ BEg+2a[ |E4|2+2|E4 | 2]E4=0.
X

We make the important observation here that although Eq. (2.160

(2.13 formally resembles a Dirac equation there is at leas
one important distinction. In a truly relativistic Dirac formal-
ism, the structure matriceg,; - - - vy exhibit a completely an-
ticommuting algebra. This is clearly not the case for the ma-
trices defined by Eq(2.14). Unlike the 1D solitary wave
equation, in the 2D case the analogy with the relativistic The existence of a soliton solution in one dimension can
Dirac equation is not complete. The above matrices, whiclbe easily demonstrated by considering a solution of the form
are determined by the anisotropy properties of the photonig€(x)=A(x)e '¢®. Putting E(x) into Eqg. (2.7) with
crystal, lead to a more complicated wave equation than one,, ¥ =0, we obtain a set of coupled equations for the phase
would obtain in a truly relativistiq2+1)-dimensional field angle ¢(x) and amplitudeA(x) [4]:
theory.

For theM symmetry point we obtain the effective one-

ﬁt is easy to see whek;=E,=0 we recover the simplX
solitary wave equations.

A. Mechanical analogy for the 1D gap soliton

dé + 8+ B cog2¢(x)]+2aA(X)?=0, (2.173

photon dispersion relation in the SVEA by setting the appro- "~ dx

priate 4X4 determinant equal to zero. The resulting

roots vyield the dispersion relationSwiz(qX,qy) dA(x) i

=2 4(JET B4 VATH D) and o (ay,0y) =2 dx  AADsIN26(0] (2179

+4(yaz+ B>~ Ja;+ ). For|G|=0, there are two nonde-

generate solutions at frequencigg+83 and a doubly de- By differentiating Eq(2.173 with respect tox and using Eq.
generate solution at frequengf2. Therefore, the SVEA pre- (2.17D it follows that the phasep(x) satisfies the double
dicts approximate gaps at ti point for 2—88<w<2  Sine-Gordon equation

and\2< w<\2+8p. In order to have aompleteband gap, 5

the gaps aX aﬂdM must overlap. This leads to the require- d_+235 Sin(2) + B2sin(4¢h) =0. 2.18
ment thatAe/ €=0.6. The upperw, and lowerw_ band dx?

edges of the resultingndirect photonic band gap are given

by 0 and ™, respectively. Equation§2.7) and (2.13 It is well known that Eq(2.18 has kink type solutionf39].
describe two distinct types of So”tary waves. m$o|itary Nevertheless, it is instructive to demonstrate the existence of
wave is a generalization of the one-dimensional soliton statehe solution to Eq(2.17 by means of a simple mechanical
whereas th&/ soliton is a new type of state corresponding toanalogy. For illustrative purposes we consider 1. Equa-

a higher symmetry group of the Brillouin zone. tion (2.173 can be rewritten as
In addition to the two fundamental solitons described du
above, a symmetriX solitary wave solution is possible. This b= —— +Fog(X), (2.19

do

arises from the interaction of tw¥ solitary waves, one be-
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using the new variables= (x—vt) andr=t. Then Eq.(2.5
U(¢) can be written as

JE E, J°E
i +i(l-v) o+ —

/\ aT (9( (7y2
Po ¢

+(6—AK)E,+ BE,

20[ 2 2
\/ 4. + 3 LE*+2|E,*]E; =0, (2.223
B2y &E2+azE2+ 5+ AK)E,+ BE
I—— =i v)ﬁ_§ Py ( JEo>+ BE;
2a 2 2

FIG. 2. The existence of 1D solitary waves in a PBG is apparent . ) )
usingg an analogy with a mechanical potential These equations can be mapped onto a static equation by

U(¢)=—6¢— B sin(2¢)/2, in which a particle is pushed up by the means of the change of variables
external forceFq,=A2%(x) from the equilibrium position aip,

(x— —) to the unstable equilibrium point at ¢, (x— + ). E;=\YE,, E,=\"YE, (2.233
This results in a kink type solution for the phase anglef the
optical solitary wave. 5=v38, Ak=vvys, yi{—{, (2.23bh

where ¢ may be regarded as the coordinate of a classicaiherex=[(1+v)/(1—v)] andy= 1UJ1—v2. Inserting Eq.

particle, U(¢)=—d¢— (B/2)sin(2p) is the potential in  (2.23 into Egs.(2.22) yields

which it moves, andF.,,=A?(x) is an external force which

acts on the particle andplays the role of a time variable. If .(7E1 1/2‘72E1 —_— = 20 ==,

we add an inertia terrmg to the left hand side of Eq2.19), 'g_g A V2 + OB T BE ?[M Ey|*+2[E,|]E,

it is formally equivalent to a Newtonian equation of motion y

for a particle experiencing a viscous drag foreep. As it =0, (2.24a

stands, Eq(2.19 is the overdamped limit of this Newtonian _ _

problem in which the particle mass is negligible, and the _JE, 71/2(92E2 —~— =~ 2a =,

viscosity is large. The potentia)(¢) is sketched in Fig. 2. —I &—§+)\ (9_)/2+ 0o+ BE1+ - [N By

From Eq.(2.17h, we easily see that for a localized ampli-

tude solution, we require that sirgp=*c, whenx— *oo, +2|E,)?E,=0. (2.240

In other words whenx—o the particle is at rest at

¢=¢,=arccost- 6/ B)/2, which corresponds to the extre- In addition to the conserved energy, E¢®.24 exhibits the

mum points of the potentid). The external force acts onthe property that ¢/9¢) fdy[|E,|2—|E,|2]=0. We first con-

particle, and moves it to the unstable equilibrium position akjger the 1D case by settingdy=0 in Egs. (2.24, and

é=— ¢ for x— +c. This results in a kink type solution for seeking solutions of the forf; ,= £(¢)e' #1249, Introducing

the phase functionp, and a localized amplitude functioh _ - _

For a=+ 1, the exact solution is given by the new phase anglas= (b, ~ $,)/2 andy=(4.+ 42)/2,
' and the rescaled variable=75A, where 3#?=[2+ (1

+0v2)/(1—v?)], it follows from Eq.(2.24 that

sechiax)
AX)=A—— (2.203
J1+bZtanhax) B %Jrﬁ Co926)+ B +2aA2|A=0, (2.253
and
¢(X) = m/2+ arctafibtanhax)], (2.200 % —BA sin(2¢)=0. (2.25h

= — = 2— 2 = 4\ —
whereA= B~ 5, a=yp*~ &, andb=\(B-)/(B+2). It can easily be seen that Eq2.253 and (2.25h are iden-

) ) _ _ tical to the static equations given in E@.17) for which the
B. Moving solitary waves in a PBG material solutions are given by Eq&2.20. The only difference is that

The general time-dependent solitary wave solutions to the is replaced bys. In this new notation, the solitary wave is

one-dimensional version of E¢2.5 have been studied by yescribed by two independent parametérand v. Equa-

Aceves and Wabnitg5]. Moving solitary waves can be ob- tions (2,253 and (2.25h have solitary wave solutions for
tained from stationary ones by applying the appropriate Lor-

entz transformation to Eq2.5. We seek a solution of the __1< ol=<1, for which ;he average soliton frequency is
form given by Eq.(2.23h as w“=1+4vy4. Clearly the average

. frequency of the moving soliton is shifted from the corre-
P(x,y,1)=P(,y)e sk (2.21 sponding average frequency of the stationary soliton. At pre-
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cisely midgap ¢=0), there is no frequency shift. Fa? el s s 1t
#0, the average soliton frequency is pulled away from the Sx(a,b)Ef d*r| b~ (o, V|*—a" ¥ 0,0, ¥

midgap in a strongly velocity-dependent manner. In fact for
high velocity solitons, the average frequency may be com-

a — -
pletely outside the gap. Nevertheless, the existence of these —W(5+Ba) V- 7@ b (wTw)? ).
out-of-gap solitons is contingent on the presence of the PBG.
For the sumy of the phase angles, (3.2
oy 4 Using this definition, it is straightforward to verify that Eq.
o §a7]2v Y2A2, (2.26  (2.7)is the stationary point of Eq3.2) with respect to varia-
4 tion of ¥'(r), i.e., Sy /6¥T=0. Since¥ is a solution to
Using solution(2.204, this can be integrated to give Eqg. (2.7), it follows (as a special case of the extremum prin-
' ciple) that
SO ctabtanian] (227 IS¢ _ ¥
== arctamb tanha . OOX _ 99X _
3(1-0vd Ja b o 0. (3.3

Combining these results, we obtdfior =1) This leads to the following two conditions:

| YAl + (0] .
‘P(X,t)=7lA(§)e'w§X()\1/4ei[¢<§)<b(§)])' (2.28 fdzr(‘PTiUzﬁx‘P):—Ef d’r(v'w), (3.4a

Clearly, if v=0, thenp=1 and=0. Solution(2.28 then a
reduces to the static solution as required. In other words, ZJ d2F|VyW|2=§j d2r(v )2, (3.4b
once the static 1D solitary wave solution is known, it is easy

to generalize it to a moving solitary wave using the precedmeany condition(3.4b can only be satisfied whea>0,

Ing steps. o _ _ _ since both integrals are positive. This means that a localized
_Ford>1, the generalization to moving solitons is non- y qjitary wave does not exist for a negative nonlinear Kerr
trivial since the Lorentz transformation does not completely.,eicient. This simple scaling argument can also be applied
reduce the time-dependent nonlinear wave equations o thg w6 v solitary wave solution by constructing an appropri-
corresponding static equations. In Sec. IV, we use a varidse action” functional S, . This leads in an analogous

tlo_nal method to obta_m an approximate time-dependent SGhanner to the following necessary conditions for the exis-
lution for the 2DX solitary wave. tence of anM solitary wave:

lll. EXISTENCE OF SOLITARY WAVE SOLUTIONS — af . ;
FOR D>1: NEAR BAND EDGE APPROXIMATION der(w Wlﬂx‘I’)=—§ derUy (W', V) (3.58

Unlike the 1D case, fod>1 an analytic solution to the and
solitary wave equation is not always possible. Our approach
to the higher-dimensional solitary waves is to obtain an ap- J PR _ EJ 25 +
proximate solution using a variational method. This varia- dr(Wiy0y¥)==7 | dTrUn (WL,
tional method recaptures all the important features of the (3.5b
soliton solution in one dimension. Fal>>1, we begin by ) i
considering the condition for the existence of a solitary waveere, Uy, is defined as
solution. We also consider the limiting case of near band o a2 N 2
edge solitary waves in which the full nonlinear wave equa- Un (W) =3(W W) = (W Ty, ¥)”.
tion reduces to a simple NLSE. In this case the existence o learly Eqs.(3.5 can be satisfied for both signs ef In

a solitary wave can be reduced by means of analogy to thother words, the symmetricd solitary wave exists for ei-

Zxrljsgfer:ﬁ;f \fl\gl?mte action trajectory of a classical particle "her sign of the Kerr coefficient. Although the present argu-

First we derive anecessarcondition for the existence of gﬁgé oigly rg(r:(t)i\(/:f(tek?isaoptgﬁesrso?/ri)c/ieiogdslltJI?fir(]: ig;tscoclflodaioe:lzé
the solitary wave solutions to E¢2.7). Consider the func- 1N P P ;
tion well. In order to proceed further, we consider a frequency

close to the band edge. In this case it is possible to derive an

1 effective nonlinear Schobnger equation, from which a com-

. , (3.1)  Plete existence proof of solitary wave solutions can be ob-

Jab tained by means of a mechanical analogy. First we consider
the X solitary wave Eq(2.7). Introducing the Fourier trans-

where W is a solution to Eq(2.7). Clearly,Q=fd? w'w  formation ¥(§)=/re '""W(f) and using the notation

is invariant under the scale transformations defined by thd;=/d?f, [4=/d*d/(27)?, Eq.(2.7) becomes

parametersaa and b. It is useful to construct an “action” ) .

functional for the static solitary wave defined by [—axo,—ay+ 81V (§) +Fn{W¥}=0, (3.6)

Xy

v= a'b
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where the nonlinear functional
= afqlfqz(‘[’T(ql)‘I’(ﬁlz))‘l’(q+ 61— 02)-
The linear part of Eq(3.6) can be diagonalized using the
g-dependent unitary operator
0
CO{ E)

[0
Sln(z
0 [0\ ]
cos{i) —sm(i)
where tan@)= B/q,. Introducing the new spinor field
®(4)=S"(§)¥(§), Eq.(3.6) becomes

FNL{"P}

S(a)= 3.7

[VaZ+ B2o,— g2+ 8]10(§) + Fy {P(§)}=0 (3.9

The photonic band edge occurs|gt=0. Near band edge

behavior may be described by expanding the dispersion re-

lation for small|q],

4

il .

1+B

(3.9

2 1 q>< 2
B “E(F) B

1(Qx
8l 8

Within this approximation, we replac®g) by S(0), sothat
®(G§)=S"(0)¥(§). Retaining only quadratic terms in the

dispersion and transforming the equation back to coordinate

space, we obtain,

{ = 0,0,xI2B+ dyy+ 8+ Ba,+ a[ P T(F)D (1) ]} P (F)=0.
(3.1

Solutions may be found fora=-1 by choosing
®'=(E,,0), and fora=1 by choosingb'=(0,E,). In this
case we obtain two uncoupled nonlinear equationsEor
andE,. Near the upper band edge, ,

(0% —w?) - l=
[ - ﬁaxx_ dyyt T—a|E2|2 E,=0.
(3.11a
Near the lower band edge_ ,
1 (wz—wz_) = o=
— ﬁaxﬁ dyyt — + a|E4|*|E1=0.
(3.11h

In Eq. (3.113, the term— a|E,|? acts as an attractive scat-
tering potentiakfor «>0) in bothx andy directions, and a
repulsive potential for 4<<0). This leads to a self-trapped
state of light(solitary wave only whena>0. On the other

hand, the term|E4|? in Eq. (3.11b acts as attractive poten-
tial in the x direction, but a repulsive potential in thedi-
rection(for «<<0), or vice versa for §>0). Consequently,
there exist no localized solitary wave solutions whea 0
as predicted by the scaling argument in Ej4b. Equation
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Following the same procedure, we can obtain near band
edge equations for th®l solitary wave. After the transfor-

mation tod space, and applying the “effective mass approxi-
mation,” Eq. (2.13 becomes

1 2 1 2
Y1\ B+ ﬁqx +v4| Bt ﬁqy +6m|P(q)
+Fn{®P}=0, (3.12
where 8= (0?—1)/4, ®(d) =S'(0)¥ (),
i 0 —1V2 -}
so-| P 0 M
-2 oo 3 '
1 12 o

andF {®} is the appropriate nonlinear functional ®{q).
Equation(3.12 in coordinate space yields

1 & ya &

i 4 B(y1t ya)+ Oyt o 3(DTD
26 0 2B oy B(y1t va) + om+al3( )
—(@Ty,®)7,] | P(x,y)=0, (3.19

wherey,= S'y,S. In this case, localized solitary wave solu-
tions of the nonlinear Schdinger equation are possible for
both «=*1. Since the matrix(3.13 rotates the original
spinor field ¥, the symmetricM solitary wave amplitude

takes the form®dT=(E,,0,0,0) near the lower band edge.
Using this ansatz, Eq3.14) reduces to

2B gy? " 4

+3a|E1|2]'51(x,y)=0.
(3.153

Near the upper band edge, the ansdt?=®(0,0,0E,)
yields

(03— ?)

242 4

—3a|E4|21E4(x,y)=0_
(3.15h

Using the quantum-mechanical potential well analogy, it can
be seen that Eq3.153 has a localized solution fax=—1.
Similarly Eq. (3.15b leads to a finite energy solitary wave
for a=+1. In Sec. IV, we use a variational method to ex-
tend both of these solutions throughout the entire photonic
band-gap region.

A. Mechanical analogy for the NLSE
To demonstrate the existence of a finite energy solitary

(3.11h has solutions which are extended in thelirection.  wave solution near a band edge, we make use of a mechani-
These solutions have a total energy which increases linearlgal analogy. From the earlier discussion, it is apparent that
with the size of the sample, and we do not consider thenwithin the near band edge “effective mass” approximation,
here. the electric field envelope function, satisfies an isotropic,
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u(y) with more and more nodes. Fde>1, the solitary wave so-
lution, for a given frequencyv, is not unique as it is for
d=1. In this paper we consider only the nodeless solution
which corresponds to the fundamental solution. The near
band edge solutions that we derived using this mechanical

¥ analogy provide a plausibility argument for the existence of
solitary wave solutions throughout the PBG tbr 1. It also
suggests that nonlinear wave solutions of finite energy in a
PBG are not unique at a given frequency s 1.

B. Solitary wave propagation in a lossy-gain medium

Real PBG materials will invariably have small absorption
FIG. 3. The mechanical analogy for the NLSE consists of alosses. If the solid backbone is of “fiber-optic quality” these
potential, U(W¥) = — a;W2/2+W¥%4, in which a fictitious particle losses may be small. However, nonresonant impurities and
moves. Ford=1, the particle is released from restt=¥,, and  vibrations of constituent atoms of the solid, will tend to
comes to rest at the top of the hi#t=0. This results in a nodeless slowly dissipate energy from the solitary wave. In addition,
localized solution inx. For d> 1, the particle eXperienceS a time- the Sculptlng processes requ"‘ed to construct a PBG from a
dependent, viscous damping force. Here the particle is releasqgl|k semiconductor creates a large amount of surface area
from a point¥=w,>W, in order to compensate for the losses. o the solid PBG backbone. Surfaces of electronic semicon-
The initial positionW¥, is chosen such that the particle comes to restyuctors can lead to unoccupied surface electronic states
at the hill''=0. This results in a nodeless localized solution. Un- hich may be excited by light within the PBG. Finally, the
"k? the 1D case, the particle may be .released from a higher. initia, BG material can be doped with resonant impurities ,vvhich
point such that It crosses the zero point and retum‘g.t’gp'. This can either absorb light or provide gain. A realistic treatment
solution results in one node. In general, there are an infinite numbe(;f nonlinear wave propagation in a PBG material must ac-
of solutions with more and more nodes. . .
count for these effects. We discuss, below, a special case for
which a simple analytic solution is possible.
The NLSE may be generalized to include linear loss
ain) and/or nonlinear losgain). In the case of only linear
0ss (gain or nonlinear losggain), stable stationary solu-
tions may not exist. However, when both linear and nonlin-
(d—1) ear losses or gain are included, the two processes may bal-
W+ T‘I’r—a1‘1’+‘l’3=0- (3.16  ance each other, resulting in a stable solution. We illustrate
this effect ford=1 using the nonlinear Schdmger equa-
tion, obtained from the “effective mass approximation,”
near the upper band edge with a complex refractive index

nonlinear Schrdinger equation. If we consider an isotropic
solution for each component of the spinor field, the effective
NLSE in d dimensions near the upper band edge takes th
form

Here a;= (w0 — w?)/4, and thex coordinate has been res-
caled asx' =x+28. It is useful to interpretV as the coor-
dinate of a classical particle at “timer': E . 1 d2E
I_ —_—
U (d—1) gt 2B dx?

. e (317 (319

—a’lE+IF|_E+(nNL+IFNL)|E|2E=0

Here the imaginary part of the linear susceptibillty is
positive for a lossy medium, and negative in a gain medium.
@, v2 The imaginary parfl’y, of the nonlinear susceptibility is
U=-— +—. (3.18 positive when there is two-photon absorption loss, and nega-
2 4 tive when there is two-photon gain. We seek solutions to Eq.
(3.19 in which the electric field amplitude can be written as
E(x,t)=¢()e'lR+ ¢ wheref=t—x/V, andV is veloc-

where the potentidl is given by

In addition to moving in the potentidl, the particle expe-

riences a “time-dependent” viscous damping forcedor1. . ; . o i
For frequencies inside the gap{>0), in d=1, the soliton ity of the sollton._lnse_rtmg this into Ed3.19, and separat
ing the real and imaginary parts, yields

solution corresponds to a particle released from rest at posi-
tion =V, at “time” r=0. Asr—oo, this particle comes et (2 ) Bred+T e+ e3=0 3.20
to rest at¥ =0 (see Fig. 3 Clearly, this is the only finite ret(e@)ftedtlie+lne"=0, (3203
action solution. Fod>1, it is necessary for the particle to be
released at a positiolt ;> W, in order for it to overcome the
viscous damping effect and come to restiat0 asr—».  \where a=(a;+k2/28), 7=(k/B—V), and the dot repre-

This solution corresponds to a nodeless solitary wave solusents the derivative with respect to the independent variable
tion. Ford>1, if the particle is released from an even higher; Equtaions(3.20 allow a solution of the forms

point, then it can cros¥ =0, move to the second well, and

then return to?V =0 asr — . This solution will have a node, e({)=A secha?), (3.21
and is a higher energy solitary wave solution. In this manner

it is possible to create solutions of higher and higher energy ¢({)=Db In[secha()], 3.22

redp+e12B—e($)212B— ae+ny e3=0, (3.200
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where A%?=—3T /2"y, a?=-TB/b, b=a,/T, i . ) .
+(alT|)?+1, andV=k/B. For a physically admissible L=V V=WV A+ (1-0)(Vo V=W oW )]
stationary solution, we require thR{ andI'y, have oppo-

site signs. Alsd’; andb must have opposite signs.
g L PR g —WT(5— Ao W — BT W — %[(\W«W

IV. VARIATIONAL METHOD _(q;TO-Z\[/)Z]_ (4.5

For many one-dimensional nonlinear wave equations, aq_h Euler-L L val h
exact analytical solution can be found. In higher dimensions,. € kuler-Lagrange equation Is now equiva ent tp t € one-
this is no longer possible. Since numerical methods are gerg_lrrlensmnal version of Eq2.22, Where the action is given
erally quite cumbersome, it is useful to develop an approxi@s S=Jd7 d{ L. Rather than solving the wave E(®.22)
mate analytical approach. We do this by reformulating thedirectly, we consider extrema of the action parametrized by
problem variationally. A variational approach for nonlinear the variational trial function

ulse propagation in optical fibers was used by Anderson ;
F40] fo? trrw)egnonlinear pSch'ntinger equation. Byyusing a E1 )=z A{)e 129, (4.9

simple Gaussian trial function, the pulse width, amplitude,Here e, A¢) is the amplitude of the solitary wave, and

and frequency. chirp were recaptureq, in good agreemen 1A {) is the corresponding phase angle function. The inte-
with the_ n_umencal ana_IyS|s. Our variational m_ethod IS _base ration over the independent variablérom O toT becomes
on minimizing a functional of the system using a suitable

trial solitary wave function. We show that with only a few trivial in this case. Accordingly, we defin= S/T. Substi-
variational parameters, most of the important physics can b&/ting the trial function into the functiond#.5), we obtain
recaptured. The effectiveness of the method is confirmed by 0 0
comparing the variational solution to the exact solution in s:f dg[(l—v)sf—l—(lﬂ;)s%—z
one dimension. Fod>1, our variational solution provides a 4 4
good approximation to the numerical solution obtained in o
Sec. V. —(5+AK)e5— 2B cot 1~ ha) — Z(s1+ 3
We first illustrate the variational method for one-

dimensional gap solitons, and then generalize the method to

higher dimensions. Consider the Lagrangian density for the +4s§s§)
1D spinor field in the SVEA:

—(6—Ak)e?

. 4.7

Whenv =0, then{ and r reduce to the laboratory coordi-
natesx andt, respectively. A particularly simple trial func-
tion consists of choosing a Gaussian amplitude,
. =A1,2e**’242 and a linear phase modulatiapy ,=c+Kkj (.
— VT (5+ LoV — E[(q,fq,)z_(q,fazq,)z]_ Inserting this trial function into the functiond, we obtain

i
L= E(\PI\II—\IIT\IQ—HI’IUZ‘P AR )

4. (SV2)/\Jm=

The nonlinear wave equation follows from the least action
principle

(1—v)A%k,— (1+v)A%k,— (65— Ak)A2

—(8+AK)A2— 2 cog2c)e ™ (ki~kp)/Ea®

V2a / a (49

85=0 (4.2) 6

Solving the equationgS/dr;=0 with 7,=A, 5,a,k; ,,C, we
obtain a set of algebraic equations. It is convenient to define
the following new variables: k=(k;—k,)/2, k'=(k;
+K)/2, App=NimA%, (=N M=), S=4ly,

(AT+ A3+ 4A3A%)

where the actionS=[dx dt £. In particular, the Euler-
Lagrange equation

oL | aL a( oL oL —0 43 and Ak=v . Here,\, », andy are the same as given in
NT_E opt +5 opt B Jut (4.3 Sec. Il B. In terms of these new variables, the variational
! X equations take the forms
is equivalent to the one-dimensional version of E45). We B cog2c)e ¥3(1—¢)+5=0, (4.99
consider a special class of solutions moving with veloeity
of the form k/y=—pB cog2c)ée ¢, (4.9
W(x,t)=W(,7)e 2k (4.4) aA?=—2p coq2c)ée 72, (4.90
where/=x—wvt and r=t. In this case the Lagrangian den- 2\2

1 — 2 272
sity (4.1) takes the form K'ly 3 vran A% (4.99
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where&=k?/a?, and cos(2)=+1. For a given detuning, 025 T T T T
we solve for¢ in Eq. (4.99. All other parameters are then

evaluated easily. However, for this simple trial function, a
soliton solution cannot be found for the entire band-gap re-

gion. There is a critical value o§C=0.4458 cos(Z), such
that for positive nonlinearity >0, cos(Z)=—1] a solution

can be obtained fof, <8< 5. and for negative nonlinearity
[a<0, cos(2)=1] a solution can be obtained for

'5.<8<5_. The reason for this is that the phase modulation

and the exponential localization of the exact solution differ

significantly from the above trial function at either band

edge. We discuss this effect in more detail below, for the

case when =0. Consider the midgap cage=0 anda=1. g ——

Thena=0.68/\1—v?, describes Lorentz contraction of the

soliton along the direction of propagation. The peak intensity

is given by A’=0.867°8. Thus, using a simple trial func-  FiG. 4. Plotted is the quantityE,|+|E,| (in arbitrary units

tion, the qualitative physical features of the time-dependenys the spatial variabla (arbitrary unit3, for the exact analytical

solution can be recaptured. gap solitary wave solutiofsolid line) and the variational Gaussian
Whenv =0, Eqgs.(4.9 reduce to the static solution, where trial function (dotted ling for the midgap frequencys=0. The

5=9, y=1, =1, andk’=0. Fora=+1, and a frequency Other parameters are chosen@s0.1 anda= +1.

close to the upper band edgé=£p3), £<1. In this limit,

2;;((:;)3—?2_)/3@, a= (0> — %) Bl6, k=(w> — w?)/6, Sx=f " dy[(l—v)siail—(1+v)s§ai2+(@)2

(2)=—1. Near the band edge the total energy scales a ¢ ay

as Q= \2m(w> — w?)/3B. As w—w., , the soliton energy

vanishes. +
For «=+1, when the frequency is close to the upper

band edge §=p), thenA,a,b<<1. In this limit, the exact o

solution in Eq. (2.20 can be approximated as — — b )— —(e2+ el 2.2y 1 )

A2(x)=A sech@x) and ¢=m/2+b tanh@x). Here the 2h codé1- 420~ 3 (81+82+48182)] 410

phase angle increases linearly within the core of the am- ) ) o )

plitude function A(x), but saturates in the wings when I order to obtain alocallgezd, 1;|r;|te energy solitary wave, we

A2%(x)—0. On the other hand, when the frequency is close t@hoosee; A{,y) =A; £ ¥ PY" and ¢y ,=c+kyof. In-

the lower band edgé=— B, the scale parametexr in Eq.  serting this into the functional and performing the integra-

(2.20 goes to zero, but the parametebecomes very large tion, we obtain

and determines the size of solitary wave. In the core region

(ax<1), the amplitude takes the approximate form ) ) 202 A2ro

A2(x)=a/[1+ (abx)?] and the phase angle is approximately ~ 2Sx/7=| (1—v)Aik;—(1+v)Asko+ATb*+Asb

¢=ml2+arctanbay). Here the phase angle saturates well

0.2

0.15

0.1

[E*+E? (au.)

0.05

LA N B B L N R L B B L B B

(982 2 2 2
W —(86—AK)ef—(6+AK)e5

before the exponential decay of the amplitude sets in. Our —(5—Ak)Af—(6+Ak)A§

simple trial function fails to capture the required phase )

modulation near the lower band edge. A variational result for —2p cog2c)e” imk)fea

the entire band-gap region can be obtained by choosing a 2

trl_al ph_ase_angle of the formb(>_<) =c+arctankx). However, — _a(A411+ A‘2‘+ 4A§A§) /ab. (4.11
with this trial function all the integrals cannot be evaluated 6

analytically. As an alternative, we may separate the real and o _ o

imaginary parts ofE=u+iv, and use the trial functions EXxtremizing Sy with respect to the variational parameters
(a=+1),u= Bxe 2% andp =Ae 2% whereA. a. andb A, ,,a,b,c andk, , leads to a set of conditions analogous to
are variational parameters. This trial function yields an anaEa- (4.9:

lytical solution for the entire band-gap region. In Fig. 4 we

compare the exact solution to this variational Gaussian trial B cog2c)e 31— &2)+5=0, (4.12a
function at midgapw?=1.

Having obtained a variational solution for the one- k/y=— B cog2c)ée 22, (4.12b
dimensional gap soliton, we proceed to apply this method to
the two-dimensional PBG. The simplest gap solitary wave yb2=— B cog2¢)ce 212, (4.129

for the 2D PBG is theX solitary wave. The corresponding
action functional is similar to Eq4.7), except for the addi-
tion of the y coordinate. Using the trial function
E1ALY)=e1A¢ y)e' %249, the appropriate action func-
tional takes the form k'/y=—vyb?+ % av n°A2. (4.12¢

aA?=—2p coq2c)ée 2, (4.129
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LI LS A I L tion, whereas it expands in the transverse direction when
#0. These effects are most apparent when velocity ap-
proaches the average speed of light in the medium. The re-
quired incident intensity can be estimated by

0.3

lin®|E1|?=3(1+v)¥?J1-vA%/(3—v?), (4.13

which vanishes as approaches the speed of light in the
medium. The backward flux is proportional|®,|?, and can
be found by replacing with —v in Eg. (4.13. Similarly,
the total energyQ= [d% (|E,|2+|E,|?) of a solitary wave
associated with a twofold symmetry point imdadimensional
PBG material can be scaled as

By P+(E,f?

0.1

o
o (V]
e LA e s B B e iy s

g | NN
-100 -50 0 50 100 3
¢ Q(v)=(1-v?)E 9"
3-v?

Q(0). (4.14

FIG. 5. Plotted is the energy densit;|?+|E,|? (a.u) for the _ _ _
2D X solitary wave as a function of the propagation direction This describes both the 2B solitary wave and the 3

=x—vt (y=0), for the case when=0 (solid line), y=0.5(dot-  Solitary wave, which we introduce in Sec. VII.

ted line, andv = 0.9 (long-dashed ling Here the velocity is in units As in the 1D case, the Gaussian trial function with linear

of the average speed of the light in the medium. The Lorentz conphase modulation yields a solitary wave throughout most,

traction becomes more apparent as the velocity approaches thrut not all of the gap at th¥ point. The complete photonic

speed of light in the mediunv(-1). Here5=0 andg=0.1. band gap for the 2D square lattice consists of the intersection
of the gap at th& point and the gap at the point. For this

Here all the parameters are defined as in @cP). The sig- complete gap region, the above ansatz nevertheless provides

nificant difference from the 1D case is the additional terma simple but valuable approximation to the solitary wave

—vyb? in Eq.(4.126. To illustrate how the moving solitary ~solution.

wave differs from the stationary one, we consider the midgap Since the asymptotic behavior of the soliton wave func-

case 5=0. In Fig. 5 we compare the energy density tion is actually of the forme™, a more accurate trial func-

|E,1|?+|E,|? (as a function of =x—uvt) for the the station- tion is (for v =0)

ary solitary wavev =0, {=x (solid line) with moving ones

of velocity v=0.5 (dotted lin@ and v=0.9 (long-dashed A(xy)=A sectiax)sectiby) (4.153
line). Similarly, in Fig. 6 the energy density is plotted in the and
transverse directioy for the same parameters. The solitary
wave undergoes a Lorentz contraction in the moving direc- ¢(x,y)=c+arctarfid tanh(ax)]. (4.15b
T Inserting the ansatz4.195 for W,y into the functional
L Sx, we obtain,
0.3
i Sy/8=A?[ arctarid) — 1/d+ arctarid)/d?]/b+ A%b/3a
I —A?5/ab—4aA*/9ab
g 02 —cog2¢c)BA[2 arctarid)/d—1]/ab. (4.1
= - The extremum condition8Sy /J;=0 for the variational pa-
01 N rameterst;=A,a, b, d, andc leads to the algebraic equa-
L tions
- b?=2aA?/3, (4.173
0
-20 a= B cog2c)[d?(1+d?) —d arctarid)]/[d—arctarid)],
(4.17b
FIG. 6. Plotted is the energy densiti;|?+|E,|? (a.u) for the a[arctarid) — 1/d + arctarid)/d?]/2+ &
2D X solitary wave as a function of the transverse direction
(£=0), for the case when=0 (solid line) v = 0.5 (dotted line and +cog2c)pB[2 arctarid)/d—1]=0, (4.179
v=0.9 (long-dashed ling where the velocity is in units of the
average speed of the light in the medium. This expansion of the aA?=9[arctaid) — 1/d+ arctarid)/d?]a/4,
solitary wave in the transverse direction becomes more apparent as (4.17d

the velocity approaches the speed of light in the mediur ().
Here §=0 andB=0.1. cog2c)==*1. (4.17¢
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T koY sw= [l A T gl g0
. . + Su(AT+A3) +4A1A,B cOS b1)COY 62)
3 1
5 ] +2a(Af+ AL+ aAZA2 ) (4.20
& 3
g 1 Using the trial function
'g __ ; A(X,y)=As(X,y)=A secltax)secliay)

| and
ol e b b '\:o ¢j(x,y)=c;+arctanb taniax)]
w0 e ) —(~1) arctanib tank(ax)), j=1,2
we obtain

FIG. 7. Plotted are the variational parameters, forXhsolitary
wave solution versus the detuning frequendAB, (8=A€/8€) Sw/8={—2[arctarib) — 1/b+ arctarib)/b?]/a

measured in units oafogl. The soliton size parameters g8é(a) 9 9
(solid line) and y/8/(b) (dotted ling in units ofa, /27, wherea, is +2p[2 arctarib)/b—1]cog c,)cogc;)/a”+ oy /a
the lattice constant. The intensity isgiven BY/ 3 (short-dashed +8aA2/3a2}A2. (4.21)
line) in units of A™!, where A=2¢/97|x®|. The quantity

VBA?/(ab) (dotted short-dashed lineis proportional to the total The extremum point ofS,, with respect to the variational

energy of the solitary wave. parameters is defined by the conditions:

Hsre a s)c()lution is possible for the entire band gap a= Bcog c;)cog Cy)[ b/ (1+b?)
e oM BT 1 ey 0 s et o~ arctant |

e Ker coefcent. o prdiied n the scalng aumert 5+ 2cosc coscy (2 arctanh)/b- 11-0,
as a function of the detuning frequenéyfrom the mid gap. aA2=[arctarib) — 1/b + arctarib)/b?]3a/8

Near the upper band edge,. , d<1, so that we may expand

arctan@) in a Taylor series. This leads to the analyti- and

cal solution a=+3B(w’ —w?)/4, A?=9(w?—w?)/16,

b=/3(w? — »?)/8 andd= y3(w? — w?)/168. The total en- cogcy)co8cy) = £ 1.

ergy can be found for frequencies close to the the upper banflhese equations admit a solution for both=+1. For

edge asQ:3.\/%. . . . a=+1, cos€)cosey)=—1, and for a=-1,
The M solitary wave is a new type of solution for which fcoscl)coscz)=1. In Fig. 8, the solution to the variational

p

there is no analog in one dimension. It is purely a result o . ; ;
. problem is plotted against the detunin arameter
the 2D PBG structure. It resembles the structure of two in- P g g p

: . . Sy =(w?—2)/4. Similarly, a variational solution can be ob-
teracting 1D solitary waves. The general time-dependent SQained for the composit& solitary wave solution to Eq.

|Ut:0? IS _Tr?re Ct(.)mpfl'citﬁgﬂ’ solltwe only d'|scgss trg)e stati 2.16. From the symmetry of the equations it can be seen
solution. The action for solitary wave IS given by that E5 4(X,y) =E1 {Y.,X). The results are qualitatively simi-
lar to those of the simpl& solitary wave solution. Unlike
S :J APV i (Ve dot vodo )+ Sur + ¥ the M solltary. wave, the cor_nposnﬁ solitary wave exists
M PV T (710t v20)+ dut Bysl only for a positive Kerr coefficient.
0 T
Un (W7, %)}, (4.18 A. Numerical estimates for 2D solitary waves in a PBG
The variational results are useful in determining some im-
ortant physical quantities such as the total energy, peak in-
ensity, and localization length of these solitary waves. The
standard time-averaged electromagnetic field energy density
is given by €|E|%/8m, where the physical electric field is
Qi i0xy) given by ReéEe“‘f"). In our convention, the physical elec-
\If:A-(x,y)( _ ) j=1,2. (4.19  tricfield is ReEe '“"). Accordingly the energy density be-
b e 14y comesu="¢|E|%/2z. Thus the total electromagnetic energy
in our case is defined asU=€Q/2w, where
In terms of these amplitudes and phases, Q=[dr (¥T™W¥). Similarly, the total time-averaged power

where Uy (¥1,9)=1a@WW)2—(¥Ty,¥)%). The M
solitary wave is described by a four-component spinor fiel
resulting from Bragg scattering in both tixeandy direc-
tions. We use the trial functiol|,,=(¥1,¥1), where
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1 .5 T T T T | T T T T | T T T T I T T T T 1 .5
3 2d M-solitary wave B

variational parameters

1 |
o 1 1 1 1 1 ) 1 1 I 1 1 1 1 I 1 i3 1 1 0
2 -1 0 1 2

- 6u/B 8,

FIG. 8. Plotted are the variational parameters forheolitary
wave solution vs the detuning frequenéy; / 8, measured in terms
of w,*. The soliton size parameter ¥ (a) (solid line), the inten-
sity is A%/ 8 (short-dashed lineand the quantity/8A%/(2ab) (dot-
ted short-dashed lings proportional to the total energy of thé
solitary wave.

flow (Poynting vector is given by S,= c&/2m (|E,|?

For the X solitary wave solution we consider two cases
with x¥>0, one with frequency close to the upper band
edge and one at the middle of tikegap. For a frequency
detuning from the midgapy=0.99753 (where the upper
band edges, = B=A€/8€) the variational solution yields
A%/ B=5.62x 102, a/3=8.65x10"2, b/\/3=6.12x 102,
andA%/ab=1.0614/8. At midgap, wheresy=0, the param-
eters becomeA?/8=2.1, a/l=1.42, b/\/=1.18, and
A?lab=1.24//.

For theM solitary wave solution we consider two cases
with x¥>>0, one with frequency close to the upper band
edge and one at the middle of tih& gap. Near the upper
band edge, we choos®,=1.997%3, and the following re-
sults are obtainedA?/8=9.4x10 4, a/B=8.65<10 2,
and A%/a?=0.125B. At midgap &y=0, we have
A?/8=0.6, a/3=1.6, andA?/a®=0.22/3. The results for
x¥<0, can easily be found by mirror reflection about the
midgap.

In general, the required peak intensity and power for the
excitation of these solitary waves decreases as the Kerr co-
efficient | x(®)| increases. The choice of the material is dic-
tated by the specific application. For instance, a PBG inter-
connect between fibers would be designed to have a gap
centered at 1.5um, with a large Kerr coefficient at this

—|E,|?) for the X solitary wave solution. For a stationary wavelength. For applications in the picosecond regime, a fast
soliton, S;=0, and there is no transfer of energy. Neverthe-nonlinear response is required. In addition to these require-
less, it is instructive to evaluate the forward flux, defined asnents, the linear and nonlinear losses of these materials
lin=(C€/2m)|E4|%. This quantity provides a guide to the in- should be as low as possible.

cident flux required to create a soliton using an external laser The magnitude of the Kerr coefficient and the response
pulse. For theX solitary wave solution the total electromag- time depends on the physical mechanism of the nonlinear
netic energy(per unit length transverse to the 2d Bragg grat-interaction. For purely electronic polarization, which in-

ing) is given as

A2
ab

U (Jicm= € —8A2 =22 10—10?26lg
( Cm)_ﬂ)\abgz_ X PE

(4.22

Here, the lattice constart, and the Kerr coefficienty®]

volves the distortion of the electron cloud about an atom and
virtual electron-hole pairs in the material, the response is
almost instantaneous (18 s). These nonlinearities are
achieved by operating far from any resonances. For example,
optical fibers are typically used below one-fifth of the energy
gap and semiconductors are used below their half-band-gap
energy. In transparent dielectrics, such as optical fibers, a

are all given in(cg9 units. The total energy is measured in typical susceptibility isy®)~ 10~ * esu[41]. In semiconduc-
units of J/cm, since the medium is assumed to be translationer materials, more general physical mechanisms may con-
ally invariant along the direction. The peak incident flux is tribute to the nonlinear coefficient. The most important one

given by
C’E A2 ~é3/2
I, (Wlcn?) 5 % 33.77WA, (4.23

where the Kerr coefficient is given iigg9 units. The param-
etersA?, a, andb in Egs.(4.22 and(4.23 are found from
the variational results. Similar expressions exist for ke
solitary wave solution. The total energy for thé solitary

wave is given as

E 16A2 ¢2a?

U (Jem=— ——=9.1x10 10—
e VY PEl

A2

a2

(4.29

and the incident peak intensity is

CTE A2 '~E'3/2
Iy (WemP)= — —=67.55—A2 (4.2
T A |X(3)|

involves the absorption of some of the electromagnetic en-
ergy accompanied by the creation of real electron-hole pairs.
In this case, the response time is determined by the recom-
bination time of the electron and hole, typically in the nano-
second regime. Ultrafast semiconductor materials with low
absorption losses include &g, _,As, where the nonlinear
susceptibility y®)~ 10" - 10"1° esu[42] for 800—850 nm,

and y(¥~10"*! esu[43] for 1.55 um, with femtosecond
pulses. Materials such as CdS, ZnSe, and ZnS exhibit non-
linear susceptibilitieg(®~ 10 *? esu at approximately 1.27
um using femtosecond pulsg$4]. Recent measurements on
polymeric materials have revealed both high nonlinear index
and a very fast response time on the picosecond time scale.
Polymers such ap-toluene sulfonate have a nonlinear coef-
ficient y(®~10% esu for 1.3um and 1.6um [45]. The
nonlinear susceptibility of polydiacetylene 9-BCMU thin
films has been measured in the 0&d spectral window to

be x(®~10"8 esu[46]. These materials, however, have a
low optical damage threshold in the GW/emegime.
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For illustrative purposes, consider a 2D PBG, containingsion coefficients. Here we utilize the second method. We
polydiacetylene 9-BCMU material, wherg®=1.2x10"8  write the solitary wave envelope functions in the form of a
esu and the linear refractive indey=1.6 for 0.64um. As-  finite element expansion
suming that a comparable nonlinear response can be ob-
tained at 1.55m, a suitable nonlinear PBG structure may be L
fabricated starting from a square lattice of air columns etched W(r)=w(r)= |§;’ Cij ¢i(ax) ¢;(by), (5.9
into a high index material such as silicoa=12). The air ’

columns may then be infiltrated with the polyme&r<(2.6), ~ \here{¢;(x)} is a set of orthonormal basis functions. One
creating a highly nonlinear PBG material. Since the mediumygyantage of this method is that we can perform a number of
is periodic, the dielectric constant can be expanded in a FOUs:teps analytically. Expansiai.1) is substituted into the ac-

rier series. Comparing this expansion with our model re+jon functional, and the expansion coefficients are found by

quires that we associafé with the zeroth order expansion solving the nonlinear equationsdS/dr;=0, where

coefficient, and\ e with the first order expansion coefficient. 7,=Cjj,a,b. The number of term&l in expansion(5.1) is

Then we hav¢26] increased until convergence is achieved. We first illustrate
~ 1 the method by applying it to the 1D soliton problem. In this
€=(1-fegtien (4.26 case we can compare the exact result with the numerical

and solution. Separating the real and imaginary parts of

E=u+iv, the 1D action functional becomes

J1(Gra)

Ae=A4f(ep— €p) Gr
a

(4.27
S14/2= f dx[vuy,—Uvy+ S(U?+0v?)+ B(u—v?)

Here, f=m(r,/a,)? is the volume fraction of the cylinders
with a radius ofr,, a, is the lattice constant of the 2D
square latticeg, is the dielectric constant of the cylinders,
eg Is the background dielectric constadi(x) is a Bessel
function, andG=2wx/a,. For a 2D square lattice, a com-
plete gap for both polarizatiodE and TM of the electro- _

magnetic field is not possible. Thus we consider the case ¢i(x) = sectix) i tanf(x)]. .3
when there is a complete gap for the TE polarization. Choos
ing f=0.38, there is a band gap centered aroagpth =0.25
[47]. Then, from Eq.(4.26), €=8.4, and from Eq(4.27),
Ae=3.6, yieldingB=A¢e/8€=0.05. For a PBG constructed
to have a gap centered at=1.55 um, we require a lattice oo 2
constanta,=0.4 um. For a soliton of average frequency f ¢i(X)¢j(X)dXZm5ij- (5.9
near the upper band edge of tkegap (say §=0.0489), the ‘“

total energyU =9.8 nJ/cm, with ;,=19.3 MW/cnf. At mid- .

gap5=0, U=11.5 nJ/cm withi ,=7.2 GW/cni. Similarly, W€ Write

for the M solitary wave near the upper band edge of the N

gap (5 =0.0998) the total energy Id=21.4 nJ/cm with an u(x)= 2 Cldh(ax) (5.53
incident flux of;,=6.5 MW/cn?. At midgap (8y,=0), the T TR

total energyU =37.6 nJ/cm with ;,= 4.1 GW/cnt. For a 2D

PBG material which is translationally invariant in the trans- N

verse direction, the total energy of the soliton will be deter- v(x)=2 Ci ¢i(ax), (5.5b
mined by the transverse size of the incident laser beam. If the !

2d PBG structure is confined inside a planar dielectric wave-

u v iati i
guide, the total energy is determined by the thickness of th&here Ci', Ci', a) are variational parameters. The solution
waveguide. possesses some symmetry properties which reduce the num-

ber of independent parameters. For 0, u is an odd func-
tion of x andv an even function ok. Using these symme-
tries,u andv can be expanded as follows:

The variational method provides an excellent qualitative

+a(u?+v?)?]. (5.2

We then expandi andv using the complete, orthonormal
basis functions,

Here P; are the Legendre polynomials, anf] satisfy the
boundary conditionsx—o and ¥—0. The orthogonality
and normalization relation is given by

V. NUMERICAL METHOD AND RESULTS

description of solitary waves. In order to obtain a more quan- N u

titative picture of gap solitary waves, we solve the nonlinear u(x)=secmax)§l CiP,_i[taniax)]  (5.69
wave equation numerically. In general, numerical algorithms

for 2D nonlinear partial differential equation®DE’s) are N

more complicated than for 1D PDE’s. There are two major x) = secliax C'P.. . [tanHax 5.6b
approaches. The first one is to discretize the equations by b(X) H )21 Pai-o[tant(@x)]. (5.6

defining the electric field on a suitable mesh. The second

approach is to project the solution on a finite dimensionalnserting Eq.(5.6) into the one-dimensional functioné.2),
subspace of the full function space, and then to solve thall integrals can be evaluated analytically. The nonlinear
resulting nonlinear equations for a finite number of expanterms have the formz;; . CC;C,CI(i,j k1), where
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L(i,j,k, 1) =JdX[ #i(X) ¢;(X) dr(X) ¢ (X)]. This integral can
be evaluated analytically by using the following forms of the
Legendre polynomial®,(x):

(16iz—1)+

[n/2]

2n—2m
Pn()=— 2 (=1)"
2" m=0

n

n

)anm_ (5.7

m

i2 L A2i-2)?
i

" (4i—1)(4i—3)

|

) (5.9

s N
_ld:z [_Ciuchl
2 =

W 2(2i-2)7
~CC Gise)@ios)

26
a

(CH? (C)?

2i—1 " 2i-3

I
+_
a N

wherel . contains the integration of the nonlinear term:
Iln= 2 [CICiCiClI(2i—-1,2—1,%—1,2—-1)
i,k

+2CYCiCiCI(2i—1,2 — 1, %~ 2,2 -2)
+CICYCLCI(2i-2,2 —2,%—2,2-2)]. (5.9

Applying the extremum condition to Eq5.8) results in
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FIG. 9. The convergence of the numerical finite element method
to the exact analytical solitary wave solution is demonstrated near
the lower band edge fof=—0.0875 (§_=—0.1). Plotted is the
energy densityE, |2+ |E,|? (a.u vs the spatial variable (a.u). The
dotted line is the finite element result by retaining only five eigen-
functions (N=5) in the expansion, and the solid line shows the
exact solution. The converged numerical resultNoe 12 is indis-
tinguishable from the exact solution. Hegg+= 0.1 anda= + 1.

The functional for the 21X solitary wave in terms ofi(x,Y)
andv(x,y) is given by

(2N+1) coupled nonlinear algebraic equations. Solving
nonlinear equations is complicated by the fact that the solu-
tion is not necessarily unique. The numerical algorithm is
highly sensitive to the initial guess. Here, we use the
MINPACK routine HYBRID, based on the Powell hybrid

method[48]. For the numerical calculation, we choose the
gap paramete=0.1 anda= +1, yielding a 1D photonic

band gap in the frequency range0.1< §<0.1. To test the
convergence of our numerical method we consider two gaﬂﬁ what follows, we choose the gap parameger 0.1, and

solitons: one close to the upper band edge and one close f@nsider the case of the positive Kerr nonlinearity; + 1.
the lower band edge. Near the upper band edgéJsmg t_he symmetry properties af and v, we make the
(5=0.099 75) we obtain convergence to the exact solutiorfXPansions

for N=3. Near the lower band edgé+ —0.0875), conver-
gence is achieved fdd=12. In Fig. 9 we plot the intensity
profile near the lower band edge =5 and 12, and com-

pare these with the exact solution. Near the upper band edge
|u|<|v]|, resulting in rapid convergence. Near the lower
band edgéu|=|v|, and more terms are needed to recapture
the exact solution of Mills and Trullingd#]. and

Sd2= [ ax dy 0%+ (3,07 (- oy

—8(u+v?)— B(UP—v?) — a(u?+0v?)?].

(5.11

N
u(x,y) =secltiax)secliby) >, C{Pyi_1
]

X[tanhax) P, [tanh(by)]  (5.123

N

A. 2D Solitary Waves
v(x,y)=secliax)sectiby) >, CPy_,[tani(ax)]
1)

Having demonstrated the effectiveness of our numerical
method in recapturing the exact 1D solution, we now apply
this method to the 2D case. First, we considerXhsolitary
wave solution. The real and imaginary partd&stu+iv are
expanded as

X Pyj_o[tani(by)]. (5.12h
Inserting Eq.(5.12) into Eqg.(5.11), and applying extremum
conditions, we obtain (82+2) coupled nonlinear algebraic
equations for the variational parameté:ﬁ§, Cij, a, andb.

N
u(x,y>=i2j Cll p(ax) p(by),

(5.108 For illustrative purposes we consider two solitary waves.
Near the upper band edgés+0.099 75, a converged solitary
N wave solution is obtained forN=6. Near midgap,
U(X’y):%: Ct d(ax) p(by). (5.10 6=0.0375,N=10 is needed to obtain convergence. In Figs.

10 and 11 we plot the numerically converged total energy
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60 60

FIG. 10. Plotted is the energy densiffe(|?+ |E,|?) (a.u) of the X solitary wave using the numerical finite element methNe=@), for
a frequency near the upper band edge ofXhgap §=0.09975. The spatial coordinatesy are scaled in units of the lattice constagt
Here,a=+1 andB=0.1.

density p=|E;|?+]|E,|?, within the structure, for the two
solitary waves. As expected, for frequencies deeper in the SM/2=f dx dy{v1(UgxtUyy) —Ug(vixtogy)
band-gap region the solitary wave is more localized, and the
intensity is greater than near the upper band edge. +v3(Uzx— Uzy) —U3(Ugy— Uzy)
In Table | we make a comparison of the conserved quan- 2, 2,2, 2
tity Q and peak intensity of th& solitary wave with the T om(Uptuituztug) 4B,
variational and numerical results. Near the upper band edge +2af(uf+0v3)%+ (ud+v3)?
the sech trial function gives a better result than the Gaussian
trial function. Near the midgap the Gaussian trial function +A(us+vf)(Us+vd)T} (5.13

appears more accurate.

For the M solitary wave we again use the same basisThe finite element, numerical solution of thd solitary
functions (5.3). Separating the real and imaginary parts aswave is facilitated by exploiting the underlying symmetries
E,=u,+iv,, E,=E}, Eg=uz+ivs, andE,=E}, the ac- of the M solitary wave Eqs(2.11). Equations(2.113 and
tion functional becomek (2.119 may be interchanged by the relabeling procedure

0.21

L:ﬂ_" 0.15F
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FIG. 11. Plotted is the energy densityEg|?+|E,|?) (a.u) of the X solitary wave using the numerical finite element methbig=(10),
for a frequency near the midgap of tXegap (6=0.0375). The spatial coordinatesandy are measured in units of the lattice constant
Close to midgap, the localization length is only several lattice constants and the intensity has increased when compared to the near upper
band edge solution in Fig. 8. All other parameters are the same as in Fig. 8.
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TABLE I. Comparison of the variational and numerical results along with the symmetry conditiong(x,y) =u,(x,—y) and
for the X solitary wave solution for two frequency detunings, one y5(x,y)=v,(x,—Y). Inserting expansiori5.14 into func-
close to the upper band edgés=(w’—1)/4=0.099 75, and the tjonal (5.13, and applying the extremum condition, we ob-

other close to midgapy=0.0375. We compare the peak intensity tzin (4N2+ 1) nonlinear algebraic equations for the varia-
A? (a.u) and total energyD obtained the finite element numerical tional parametersC!, BY, C’, BY, and a. Here we

. - . .. ijo ijo ijo
method, with that obtained by the Gaussian and sech variationgl,qjqer two frequencies, one near the lower band edge
trial functions. Both trial functions are in qualitatively good agree-

ment with the numerical results. Here the material parameters ar5M= —0.19975 and one deep inside the photonic band gap

chosen ag=0.1 anda= +1, and the midgap is defined ~=0. SM: —0.15, for thg case of the negatlvg Kerr Coe.ﬁlmem
a=—1. The numerically converged solutions are given in

Gaussian Sech Numerical Eigs. 12 and 13, where we plot the total energy d_ensity func-
tion |E4|%+ |E,|?+]|E3l?+ |E4|%. The solitary wave is clearly

6=0.09975 more localized for frequencies deeper in the gap region.
Q 28.11 26.84 26.18 Also, the shape of th& solitary wave departs significantly
A? 0.000 50 0.000 56 0.000 61 from that of theX solitary wave for frequencies deeper in the
5=0.0375 gap.
Q 34.77 29.56 37.15
A? 0.111 0.134 0.117 VI. 2D TRIANGULAR SYMMETRY GROUP

In this section we apply the methods of Secs. IV and V to
13, 24, andy+— —y. The same relabeling leads to the derive the existence of solitary waves in a photonic crystal
interchange of Eqgs(2.11h and (2.11d. It follows that  with a 2D triangular symmetry group. This type of structure
Es(x,y) =E;(x,—Y). Furthermore, some of the terms in the has already been fabricatg8P] using silicon in the infrared
general finite element expansion are identically zero. We utiregime (around 5um). For simplicity, we model the linear
lize the expansions dielectric constant of the triangular lattice by

N

uy(x,y) =sectiax)secliay) >, {CiiPy_J[tani(ax) P, €(x,y)=€+Ae{codGyT)+codGy F)
" +cog (G, +Gy) ]} (6.1)
X [taniay)]+ Bjj P, —i[tanhax) 1Py 1 R R
HereG,= (27/a,) (1,—/3/3) andG,= (27/a,) (0,2\/3/3)
X [tanhay)]}, (5.143 are the reciprocal vectors of the triangular lattice with lattice
constanf, . As in the square lattice the photonic band edges

N are described by the two extremal symmetry points in the

vi(x,y) =seclfax)sectiay) X, {C}P,_[tanh(ax)] triangular BZ. These are theX symmetry point
I, N
J ke=(27/33,)(0,y/3) and the J symmetry point
X Pj_o[taniay)] k;=(27/3a,)(1/3). A possible lattice structure and the
+BYP, [tanhax)]P,;_y[tanhay)]} corresponding Brillouin zone is given the Fig. 14. Following

the SVEA method, we expand the electric field around these
(5.14b symmetry points. The derivation of the nonlinear wave equa-

2
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'0I':":::.::.:.:0:0,0‘0:‘: :‘ X
SRR

60 60

FIG. 12. Plotted is the energy densjiy= (W ™) (a. u) of the M solitary wave, for a frequency close to the lower band edge ofithe
gap (6= —0.19975). The spatial coordinatesandy are measured in units of the lattice constagt
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FIG. 13. Plotted is the energy densjiy= (W ™¥) (a.u), of theM solitary wave, for a frequency deeper in the band-gap region dftthe
gap (6= —0.15). The spatial coordinatasandy are measured in units of the lattice constagt

tion is similar to that described earlier. We do not repeatwhere three modes are resonantly coupled through the peri-
these detailed steps here. Instead we simply state the resuttdic dielectric function. In this case we obtain
ing equations for the slowly varying envelope functions. For

the twofold X symmetry point, the electric field is expanded ( 1 JE, IE,

ﬁ W'f’ 3y + 5JE1+B(E2+ E3)

in the usual manner: i

E(x,y)=E1(x,y)€e'(®2Y+Ey(x,y)e (€Y (6.2 o\
+§[|E1|2+2(|Ez|2+|E3|2)]E1=0, (6.4a

For theJ symmetry point, there are three pointskirspace
connected by Bragg scattering:

| 2B Bt BE 4 Eg) + B2+ 2(E,?
E(x,y)=E;(x,y)ell(GREx+ (GRY] 4 £ (x y)e(G/E)x : 3 X A ) 3 [IE (Il
+Eg(x,y)ell(62/3x- (6r2)y, 6.3 +|Eql*)1E2=0, (6.4
Here G=4/3/3a,. For theX symmetry point the nonlin- [ 1 0E3 JEj
ear wave equation is completely equivalent to B47), and ' ﬁ X ay +6;E3+ B(E1+Ey)
the resulting gap solitary waves are identical to those de-
scribed earlier for the square lattice. However, a new type of 20
wave equation is required to describe theymmetry point + ?[||53|2Jr 2(|E4|*+E,|?)]Es=0. (6.49
Triangular Lattice First Brillouin Zone Equationg6.4) can be written in a compact form by defining

the three-component spinor field"=(E} ,E% ,E%):

Yy

900 /_x ; [1(¥ix+ Y3,)+ 85 Byt aUy (¥, 9) ¥ =O0.
In arriving at the dimensionless wave equatiérb), we per-

FIG. 14. Shown is a top view of a triangular lattice PBG struc- formed the rescaling2\/3V —w Wher37\5977.|)((3)|/.2? IS
ture (left) consisting of circular dielectric rods. The Brillouin zone the nonlinear optical coefficienk andy are dimensionless
(right) with the relevant(2/3a,,23/3a,) andX(0,2m\3/3a,)  coordinate variables measured in units®f!, andy;, 5,
symmetry points are indicated. and y; are 3x3 matrices defined as

(6.5

r \ Here 6;=(w?—4/3)/4, and

Un (P W) =[5 (PT0)— 3 (P 9)y;— %(‘I’Vé‘l’)(yé]-
6.6
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The band gaps for th& andJ symmetry points can be found

for the SVEA by settinga=0. Using the trial solution,
T =de'", the band edges for the symmetry point occur at
|gl=0, at the frequencies

(6.9

NESET AKOZBEK AND SAJEEV JOHN

Q4 A4, A4 252
+AsACOS o ¢3) ]+ S[AIHAp T Azt A(ATA;

+AAS+AZAY)] (6.12)

The integrals in Eq(6.11) may be evaluated explicitly using
the following ansatz for the solitary wave amplitude and
phase angles:

A1(X,y)=Az(X,y)=A seclfax)secliay);
AZ(XaY):bAl(XN), (6!123

$1(X,y)=cq+arctafd tanhax) ]+ arctahd tanhay)],
(6.12b

$-(X,y)=c,—arctafd tanhax)], (6.129

For the J symmetry point the upper and lower band edge

frequencies are given by

w) = \43+48,
w’ =\/4/3-88.

The complete photonic band gap is an indirect one deter-

mined byw, =0 andw_= " . In order to have a com-
plete band gap we require that §/€)=0.2 in the context of
the slowly varying envelope approximation.

Variational and numerical results

The variational method is implemented by introducing the

action functional for thel symmetry point:
Sff d*r{W i (y10xt y2y) + 83+ By3]W
U (¥T W)}, (6.9a
where
~ o
Un=5 {3 (F19)2— 5 (W11 9)? = 3 (¥ Ty, 9)%
(6.9

Using the variational trial solution

As(x,y)ei ey
Ag(x,y)e ?2xY)
As(x,y)e #3xY)

V= (6.10

the action functional functional takes the form

Jd J
sJ:f dx d;{—Ai(%+ai;

__ A2
3

ax  ay

dps 5’¢3)
J
+ 2A§% + 8y(A2+ A2+ A2)

+2B[A1A; coS 1~ ¢p) + A1A3 COS 1 — ¢3)

$3(X,y)=cg+arctafd tanhax)]—arctahd tanhay)].

(6.129
In this case the action functional takes the form
</ 2 caic) 1+ arctar@d)) ( " (1+b?)
=|—/| arctatd)— =+ ——
J d d2 \/§
2BA? [ 2arctarid) L
a2 d
X | b[cogc;—cC,)+cogcz—C))]
sinh %(d) A?55(2+b?)
X————+c0qC;—Cy) | + —————
d a2
2aA* )
+— (6+b*+8b?)|. (6.13
9a

The extremization of Eq(6.13 with respect to the varia-
tional parameterd?, a, b, andd leads to a cumbersome set
of coupled nonlinear algebraic equations. From the condi-
tions dS;/9A%>=0 anddS;/da=0, we find

85(2+b?)+2p[ 2 arctarid)/d— 1]{b[ cog ¢, — C,)
+cog¢c3—Cy)]sinh Y/d+cogc,;—c,)}=0, (6.19

aA*(6+b*+8b?)

1 arctarid) 2

=9a arctamd)—a+ . +b?)/2,

(6.19

and from the conditioS;/dd=0 we may express the pa-
rameter a in terms of the others. The last condition
dS;/9b=0 together with Eq(6.14 will be a function ofb
andd which then have to solved numerically.

We solve nonlinear algebraic equations numerically for
the casen=—1. The solution to the variational parameters
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2 T T T T I T T T T I T T T T I T T T T 2 a 5 2 2 2 2 2 2 2
i 2d J-solitary wave /' +§ §(u1+vl+u2+vz+u3+03)
1 2 2 2 2 2 2\2
1.5 —€(u1+vl—2(u2+vz)+u3+v3)
1 2 2 2 2\2
1 —E(u1+vl—(u3+v3) . (61&

For @=—1, we utilize the finite element expansion
0.5 N

Uy(X,y)= secmax)sechjby)%: CijP2i_»

variational parameters

0 Sy Lo v by by s 0
-2 -1.5 -1 -0.5
a_ 6;/B

X[tanh(ax)]P,;_,[ tanh(by)]
+Bjj Py 1[tani(ax) 1P _ [ tanh(by)],
(6.193

o

FIG. 15. The variational parameters for tlesolitary wave
shown are plotted as a function of the detuning frequefighs.
Here the soliton sizg/a (solid line) is measured in units &, , the
intensity isA%/ 8 (dotted ling, and the second amplitude parameter
is b (dotted short-dashed lineThe quantityBA%(2+b?)/a? (dot-
ted long-dashed lineis proportional to the total energy of thk
solitary wave.

N
vi(Xy)= sechiax)sechjby)%: CiiP2i-1

X [tani(ax)]Py; o[ tani(by)]

+Bj{j P2 _o[tani(ax)]Py; _1[tani(by)],
are plotted versus the detuning frequenty= (w?— 4/3)/4 (6.19H
in Fig. 15. However, ford;>0, these numerical results were

not accurate thus we do not present them on the plot. When N

a=—1, cos€;—c3z)=cosE;—Cy)=cos3—C,)=1. Near the Uz(X,y)=SeCNaX)SeCbe)Z Eﬂ Poi_s

lower band edgep=1. When a=1, cos¢,—c3)=1, and L
cos;—Cy)=cos3—C,)=—1. Near the upper band edge
b=2. Thus a solution is possible for either sign of the non-
linear optical coefficienk. The variational method is useful N
in estimating important physical quantities of the solitary vz(x,y)=secmax)secmby)2 §ﬂ' Poi_q
wave for various frequency detunings. The required incident i

intensity (flux) is given by

X[tanhax)]P,;j_,[tanh(by)], (6.199

X[tanHax)]P,; _,[tanf(by)]. (6.199
~3/2
I, (Wlcm?)=50 € A2 (6.16 From the symmetry of the Ed6.4) it can be seen that,
Ix® us(X,y)=us(x,—y) andvs(x,y)=vi(X,—y). For illustra-
tive purposes, a frequency close to the lower band edge

and the total energy of th& solitary wave yields

€%a?
@)

A%(2+Db?)
2

U (Jlem=1.3x10" 10(

|x a

8;=—0.1998(for = — 1) is chosen. The result is plotted in
Fig. 16. Deeper in the band-gap region more terms are
needed for the convergence of the solitary wave solution,
and also the solution to the coupled nonlinear algebraic equa-
tions is numerically more difficult.

(6.17

where the lattice constant &, (cm) and the Kerr coefficient
|x®| esu. The magnitude of these quantities are qualitatively

VIl. THREE-DIMENSIONAL SOLITARY WAVES
(LIGHT BULLETS ) IN A 3D PBG:

the same as in the 2D square lattice case.

FCC SYMMETRY GROUP

In order to obtain a more detailed numerical solution, we |n order to have a Comp|ete photonic gap in all directions

separate the real and imaginary parts|as u; +iv;, j=1,

2, and 3. The functional becomes

SJ:f dx dy(v1(UsxtUgy) —Us(v 14T v1y))
+ 2 (U0 2=V Uoy) +v3(Ugy— Ugy) — Uz(v3x—V3y)
+685(U+v2+ud+va+us+ul)

+2B(UqUs+UqUz+UsUz+v U2+ v 103+ UU3)

and polarizations, a three-dimensional periodic structure is
needed. Structures with a face centered cubic symmetry have
been fabricated in the microwave regiff#0,24. Very re-
cently, 3D structures made of diamond or silicon on the op-
tical scale have been fabricaté84] using infiltration tech-
niques starting with a scaffolding of close-packed opal
spheres which are later removed by chemical etching. The
voids may then be filled with another nonlinear dielectric
material. These structures facilitate complete localization of
light [17] as well as the inhibition of spontaneous emission
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FIG. 16. Plotted is the numerically determined energy densiy|¢+ |E,|2+ |E5|?), for theJ solitary wave. The spatial coordinates
andy are measured in units of the lattice constagt Here the frequency is chosen near to the lower band eflge { 0.0308),a= —1,
and3=0.1.

from atoms[18]. Another possible self-organizing 3D struc- [i0,0x +dyry' + 3,2 + 5+ Boy+ a(VT) ¥ =0.

ture arises in colloidal crysta[9]. Due to the relatively low (7.3
index contrasts, these structur@sen for TiQ spheres in

watep do not exhibit a complete photonic band gap, but will Here we have introduced the new dimensionless variables
have band gaps in specific directions. An advantage of thesg = (x+y+ z)/\/§, y’ =(x—y)/\/§, and z'=(x+y
structures is that the lattice SpaCing can be adjusted by- 22)/\/6 (measured in units Osfl) and we have per-
changing the particle concentration, particle size, and teMgoymed the standard rescaling ¥ — . This is identical to

perature[9]. In this section, we describe the nature of 3D Eq. (2.7) for the X solitary wave, except for the addition of
localized solitary waves arising in such systems using thene 7/ derivative term.

variational technique introduced in Sec. IV. For the higher symmetry point [IZO=277(1,1/2,0)60]

Fora three-d|men5|ongl photomc crystal Wlth point 9"0UPere are four coupled envelope functions. In the SVEA, we
of symmetry of a fcc lattice, we introduce a simple modelWrite

dielectric function of the form:

_ L L L E(X,y,Z)=Elei(W/a)(2X+y)+Eze_i(ﬂa)(zx_y)
e(r)=€+Ae[cogG;-F)+cogG, - +cogGs-F) _ _
+E3e7|(rr/a)(y72z)+ E4efl(n—/a)(y+22)_

+cogG,-]. :
cog Gy 1] 7.0 (7.4
Here, the r?CiFirO(ial lattice vectorsA are given DbYpefining the four-component spinor  field ¥t
Gi=(27/a,) (k=Y+2), Gp=(27/ay)(X+¥-2), Gs  =(EIEZEZE}), the resulting coupled equations can then
= (27lay,)(—X+y+2), and G4=G1+G,+Gg3; be written compactly as:

G=27T\/§/a0 is the magnitude of the reciprocal lattice vec-
tor; anda, is the fcc lattice constant. In this simple model, [(i2y1dx+ivyady+i27y,d,)+ dw+ Bys+ aUy ¥ =0,
the photonic band edges are again determined by the twofold (7.53
L symmetry point and the fourfol&/ symmetry point of the

Brillouin zone. The Brillouin zone to the fcc structure is .

shown in Fig. 17. As before, we expand the total electric

field around these symmetry points, and derive the equations

in the SVEA. Near thé& symmetry poin[Eoz w(1,1,1)/a,] w
the electric field may be expanded as

E(x,y,2)= El(X,y,Z)ei("’/ao)(Hy*Z)

+Ex(x,y,z)e (T3 (xty+2), (7.2

] ] ] FIG. 17. Shown is the first Brillouin zone to the 3D fcc lattice
The wave equation for the two-component spinor fieldstructure labeled with the twofold symmetry point and the four-
W'=(E} ,E3) is given by fold W symmetry point.
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where

% 3""|'-."|""|"',;10
7ot Lt L e e — =~ r 3d L-solitary wave /
Un=[2(V'W)=2(V Ty, V) y,— (VT y W)y, g - /
N ae7 op) asy B[ /e
=1 2 \\\ 4
Here, 8yy=(w?—5/3)/4, and the matriceg;=(y;+ y,)/2 ; - \\\ ,// 6 &
and y,=(y,— y,)/2. The dimensionless coordinate vari- 3 - AN ] 2
ables are measured in units off3G) %, and the field is Z R — . %
rescaled as/2\/3¥ — . a | 14 2
The band gaps in the SVEA for tHe and W symmetry g ! I 1 §
points are found in the usual way from the linear dispersion % ot N 15
relations. For th&. symmetry point the band edges occurat 2 " AN
the frequencies . - ]
E oLt 1 Ly v e b v v by oy 0
L_ % -1 05 0 0.5 1
w5 =+1*48, (7.69 5 88 N

whereas, for th& symmetry point, the band edges occur at
FIG. 18. Plotted are the variational parameters for the L3D
w_ litary wave. The soliton lengtg/a (solid line), and transverse
wy =+/5/3+88, 7.6b solitary g
- A ( ‘ size \B/b (dotted ling are measured in units @, . The quantity
. . 2 2 Ly .
For a complete band gap in the SVEA, we requweﬁA /ab (dotted_ long-dashed lings propor_tlonal _tc_) the total en-
Ae/E=0.66 ergy of theL solitary wave, and the peak intensifyght scale is
T given byA?/ 3 (short-dashed line

Variational results a=f cog2¢)[d%(1+d?) —darctarid)]/[d— arctarid)],

Equation (7.3) may be cast into a variational form by (7.100
defining the action functiond&, : (for simplicity we drop the
primes inx, y, z) cog2c)=*1. (7.108

From Eq.(7.109 it is clear that a localized solution exists
only for a=+1 (positive Kerr coefficient In Fig. 18, the
intensity A?, size scales,, andb, and the total energy are
_& ot 2) plotted as a function of detuning frequendy Clearly, the
(T™r)<]. (7.7 - : .
2 minimum energy solitary wave occurs near the midgap. Near
. . the upper band edge the total energy diverges. The required
Using the trial function®"=A(x,y,z)(e "¢, e'¢(™), the  incident intensity(flux) is given by
action takes the form

S = f d3F( |0, |2+ |3,V 2=V (i0,0,+ 6+ Boy) ¥

'2:3/2
lin [W/cmz]=33.77WA2, (7.1
S /2= J A3 (0yA) 2+ (9,A) %+ A0, p— SA x|
— B cod2¢)A2— aA%]. (7.9 and the total energy of the “light bullet” of th& solitary
wave is given by
This can be extremized using the variational ansatz o3
A(x,y,z)=A sech@x)sechpy)sechpz) and ¢(x)=c U (D)=14x10- £ a, | [ A? -1
+ arctad tanh@x)]. Using this trial function the integration ()=1. PE] ap?]’ (7.12

in Eq. (7.8 can be performed analytically, yielding

For the W symmetry point, the action functional corre-

S, /16=2A2%/3a+ A?[d?arctarid) + arctarfd) — d]/d?b? sponding to Eq(7.5) is given by

— 5A%/ab?— A?p cog 2c)[ 2arctarid)/d— 1]/ab?

— 8aA%27ab?. 79  Sw= J A3 r{W i (2710, + 7ady) + 2720, + Sw+ Bys]¥
The extremum conditio@S/d7,=0 for r;=A, a, b yields +U0w} (7.13a
aA?=2T arctarid) + arctarid)/d?>— 1/d]a/8, where
(7.104
—~ o -
5+ B cog2¢)[2 arctarid)/d—1]=0,  (7.10b Une=5 08 (WTW)2— 3(W Ty, ¥)% = 3 (W1 W)?

b2=4aA?/9, (7.100 — 1 (¥TH¥)2]. (7.13b
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Using the trial function WT=A(x,y,z)(e %1, 8 r——————————————7— 0.6
e '92,e71¢3 e 144) the action becomes % 3d W-solitary wave ]
= A
3 o[ 5.9 J & 4 /.
Sw= | d7r| —A 25@51_(}52)4’25(4’3_4’4) g /
ol r Z. .04
B - _/-""7__ E-
d 8 L P e ] o
+—(p1+ do— hp3— ba) | +45A? <= a4t - /' 1 B,
ﬁy ~ \ // /~/ o
& R\ = ] ':\
+2BA%(CoS 1~ p3) +COK b1 — by) 8 e Ho2 &
N (I
+c0og y— Pp3) +COL po— ha))+ 14aA4} ) ks - // _
° i
N L/ 1
(7.19 E A O R I Py
-2 1.8 16 1.4 12
Using phase anglegh;=c;+k(x+Yy), ¢,=co—k(Xx—V), 5 on /B

¢3=c3—k(y—2), and p,=c,—k(y+z), we obtain
— FIG. 19. The variational parameters for the BDsolitary wave
S(A,a,k,c)=[—3k+ ow+2p cog2c) are plotted in terms of the detuning frequengy/B. The soliton
— 3K2/422 SN 2UN2r3 size Bla (solid line, left scalg is measured in units o6 %, the
xe +a'A%JA%a’. (7.19  quantity 82A%/a® (dotted long-dashed linds proportional to the
total energy of theW solitary wave, and the peak intensifsight

Here COS(B)=[COSE; —Cg) +COSE1—Cs) +COSC,—C3)  scalg is A2/ (dotted short-dashed line
+cosE,—¢,) /4, a' =72al8, andS=S,,/m\27. The ex-
tremum condition gives For concreteness, we consider a fcc lattice of air spheres in
silicon. We consider the frequency where the total energy
Swt2p cog2c)e 32+ ¢£)=0, (7.163  attains a local minimum. This is near the midgap 0 for
the L solitary wave. The variational parameters are given as
k=—pB cog2c)ée 3¢, (7160 (4=+1): A%B=5.15 a/f=16, b/B=15 and
A?B/(ab? =1.4. For theW solitary wave the minimum cou-
a' A?=—p cog2c)ge 3, (7.160  pling energy is achieved for a detuning frequency
Sw/B=1.81 («=+1), and the variational parameters are
where given as:A?%/3=0.2, a/3=0.45, andA%B%/a®>=2.2. The

Kerr coefficient for silicon at 1.0gxm has been measured
[49] to be x¥=8x10"2 esu. However, the nonlinear re-
sponse time is in the nanosecond time scale. Considering a
filing fraction f=0.74, there exists a complete photonic

£2=K?a. (7.160

Equations(7.16 yield a solution for both signs of the Kerr

coefficient. As with the 2DX solitary wave, the Gaussian .
: : - - L . _band gap regiofof about 5 of the center frequenagentered
trial function does not give a physical solitary wave solution ta,/A=0.85. In order to place the center of the PBG at

throughout the entire band-gap region. Moreover, the use d . .
the sech trial function fails in this regard. This is probably)‘zl'SF? pm, We require a lattice cpnstaagzl_.s pm. T.he
because Bragg scattering occurs in several directions leadi pgnsmn coefficients of the Fourier expansion are given by
to a more complicated phase modulation behavior than co 6l:
sidered above. Nevertheless, in Fig. 19 the variational pa-
rameters are plotted as a function of the detuning frequency
dw, for the case of a negative Kerr coefficieat€ —1), in  and
the band-gap region where a solution is possible. As ex-
pected, the total energy of the solitary wave diverges as the [sin(Gra) —Gr, coggry)]
frequency approaches the lower band edge. Unlikelthe Ae=6f(er—e€p) 3 :

: - . . (Gra)
solitary wave, where the minimum energy is around midgap, (7.18H
the W solitary wave has a minimum energy much closer to
the lower band edge. For the solitary wave the required Here,e,=12 (silicon), eg=1 (air) andG=2m3/a,. From
incident intensity(flux) is given by these expressiorng=3.9 andB=A¢e/8€=0.07. For thelL
solitary wave with§=0, the total energyJ=0.1 pJ with

’E:(l_f)GA‘l'fGB (718a

~3/2

€ l.,,=1.2 GW/cnt. For theW solitary wave withd,,=0.127
— 2 in W ’
tin (W/C”‘Z)—5O|X<s>| A% (7178 =15 pJ, and,,=67 MW/cn?.
and the total energy VIIl. STABILITY OF SOLITARY WAVES SATISFYING A
NONLINEAR DIRAC TYPE EQUATION
~2,3 2

U (J)=8x10 12 ] A_ . (7.17H G.iven the existence of gap solitary wave solution‘_s in a
Ix®])\ a3 nonlinear photonic crystal, the next important question to
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consider is their stability with respect to small perturbations. V2Py - w‘I’o+\If§S+1=O. 8.2
Higher-dimensional solitary wavesl£2) in a Kerr medium

satisfying the nonlinear Schidmger equation are known to As described in Sec. llI, fod>1, in addition to the nodeless
be unstable to self-focusing wave collapse. Physically, théground state” solution, there are also “excited state” so-
wave collapse will eventually be stopped by other physicalutions to Eq.(8.2) exhibiting one or more nodes. Here, we
mechanism not accounted for in the derivation of the nonlin-discuss the stability of the ground state solution only. Con-
ear wave equation. These may include higher order nonlinsider a small perturbation to the stationary solutiog(r) of
earities, higher derivative terms of the power series expanthe form

sion of the dispersion, or even optical damage of the ‘

material. In most materials the nonlinear index saturates at W(r,t)={Wy(r)+[u(r,h)+iv(r,H}e'" (8.3
higher intensities, thereby stabilizing the solitary wave and ) . )
preventing wave collapse. The inclusion of fourth and highefor Which the real valued functions,v <¥, . Inserting Eq.
order derivatives in the nonlinear Scéhinger equation has (8-3 into Eq.(8.1) and keeping only first order terms in
been showii36] to stabilize the solitary wave under suitable @d v, we obtain two coupled equations for the real and
circumstances. It has also been shown that the addition of '§@ginary parts:
(x®®) nonlinearity to the usual Kerr responsg®) stabi-

lizes the solitary wave solutigrb0]. The stability analysis of

solitary waves falls into two main categories. The first con- vi= —Lau (8.4b)
sists of direct numerical stability analysis of the nonlinear t = |
wave equation. The second approach consists of linearizingegre Lo= —V?P+ -2 and L,=—V2+g
t_he nonlinear wave equation with respect to small perturba—_(25+1)q,cz)s' Using Eq. (8.2 it is easy to verify that
tions about the solitary wave, and considering the tempora\l_owoz0 and L,(VW,)=0, where j=x,y,z. Since the

growth or decay of the perturbation. In certain special Casearound state solution¥’, , has no nodes, the operatog is
one may use the minimum property of a suitable action func: o X

. ; e . ositive definite. On the other hand, the zero eigenvalue so-
tional to determine the stability of solitary waves. For scalarp g

fields with a linear spectrum which is bounded from below lution of the operatot, has one node. Therefore; has at
. P - ) _~"'least one negative eigenvalue. We consider solutions to Egs.
the existence of a local minimum of the action functional

with respect to small perturbations of the solitary wave is(8&'r4)t): O(fr)cotshgt) 'I'fr?émresulljti(r:,t)t;nléz(-?r)lilg](gr? dentaer:]dua-
equivalent to the condition of stability obtained from time- ;)ion,s v ’ 9 P q
dependent perturbation theory. This was used by Derrick

Ut= LOU, (843

[51] to establish stability of the solutions to the nonlinear Lo=Qu (8.59
. . . o] ] .
Klein-Gordon equation. However, for wave equatidesch
as the Dirac equatigrwith a sign indefinite linear spectrum, L,u=Qu (8.5b)
the action functional may not possess a local minimum in the
vicinity of a stable solitary wave. can be combined to give
In order to determine the stability of the gap solitary
waves derived in the previous sections, a small time- LoLu=0Q%u. (8.6

dependent perturbation is added to the solitary wave solution o ) o

and the condition for exponential growth of the perturbationOur definition of marginal stability is that any small energy
with time is found. Following this procedure, we conjecture conserving perturbation added to the solitary wave should
an analytical stability criterion for optical gap solitary waves, Not grow in time. In other word€)?>0. Perturbations of the
analogous to the one found for the NLSE. Our conjecturedorm u(x)<¥(x) which simply increase the overall magni-
stability criterion correctly recaptures the known stability tude of the solitary wave without affecting its shape, require
characteristics of other widely studied nonlinear spinor fieldthat energy be added to the system. We eliminate perturba-

equations. It makes some distinctive predictions for opticafions of this form in our stability considerations by requiring
solitary waves in PBG materials. that(u|¥,)=0. Now the instability corresponds to the exis-

tence of a perturbationu, satisfying the constraint
(u|¥,)=0, for whichQ2<0.
Within the subspace of perturbations for which

We begin with a brief review of the linear stability prop- (u|¥,)=0, the operator inverslegl exists. Accordingly we
erties for a scalar fiel@ satisfying the generalized nonlinear may act withL_ ! on Eq.(8.6) to obtain:
o .(8. :

Schralinger equatioGNLSE)

A. Linear stability method

iW+ V2P | W |259 =0, (8.1) gz Ulbaw 8.7
(ulLg*|u)

Whenp=s=1, Eq.(8.1) reduces to the well known NLSE.
The hermiticity of the operatoV2P+|¥|2® guarantees that Since{u|Lg *|u)>0 within this subspace, the sign 6§ is
the total “field energy” Q= fd1¥|? is a conserved quan- determined entirely by the numerator. Therefore, it is useful
tity. to determine the minimum value &fi|L,|u) subject to the

Consider a stationary solution of E¢8.1) of the form  constraints that(u|¥,)=0 and (uluy=1. This can be
W(r,t)=",(r)e'“" with »>0. It follows thatW¥, satisfies achieved by considering the functionaku|L,|u)
the static GNLSE, —Nulu)—a{u|¥,), where a and N\ are undetermined
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2
. (0= —W‘ﬂ@”)' =(WolL Y Wo). (81D

The inverse ofL; can be found by differentiating E¢8.2)
with respect tow:

Az

-~

+¥,=0. (8.12

J Lw =L (9‘1’0
5(0 0)= e

It follows that in the subspace of perturbations orthogonal to

Vv,
FIG. 20. Shown is the functiofi(A) which diverges at both _1 v,

A=—|\,] andA =X\, and is continuous between these two values. Ly Wo=— oo | (8.13

The minimum value\ .,;, defines the point wher&(\) intercepts

the\ axis. If f(0)>0, thenA;;<0, and iff(0)<0, then\,;;>0. Using Eq.(8.13 in Eq. (8.11), we obtain

Lagrange multipliers. The minimum of this functional is de- v, 10Q

termined by solving the spectral problem FO) ==\ Yo| 7= 57" (8.14

L,u=\u+a¥,, (8.8  whereQ(w)=/d%|W¥(r)|?. Therefore, the soliton is stable

if

with @ and\ chosen to satisfy the constraints. To solve this

spectral problem, we expandandW¥, in terms of the com- @

. ) ) . >0. (8.15

plete set of eigenfunctions df,, defined by the relation dw

Li¢on=Np¢,. Using the orthonormality of the functioa, ) )

we obtain, For the particular case of the GNLSE, an analytical expres-

sion for thew dependence o) can be found by rescaling
RAPR) Eg. (8.2. Introducing the scaled coordinate variable
u=a 0_%¢ . 8.9 Y=o"®r and writing®,(r)=w*g(y), Eq.(8.2) becomes

V2Pg—g+g®s*ti=0. (8.16
The Lagrange multiplierse and\ may now be determined
by imposing the constraints. The condition tiat¥,)=0
yields

It follows that

Q(w):wlls—d/pr ddr gZ(r) (817}

az I<\Po|¢n>|25af()\):0 (8.10
n Ap—A ' ' The stability condition(8.15 reduces to

We note that the eigenfunctiofi; corresponds to a “Gold- d<2p/s (8.18

ster_rgone. dlrf' FdaglcularLl(th\If_o)=0,l(J =Xy,2), tar(wjd qFor the usual NLSEg=p=1), this reduces to the condition
SOA,=U IS ad-loid degenerale eigenvajue associated wi I"thatd<2. For more general forms of dispersion and nonlin-
the spatial translation of the solitary wave in each of dhe ear interaction, the behavior @(e) is more complicated

independent, Cartesian directions. Singew,|¥,)=0, it : :
~ ) ) than given by Eq(8.17), and must be evaluated numerically.
follows that then=1 term in Eq(8.10 is absent. Clearly the The most important generalization is to the case of a satu-

Iovlvest_ e}igenc\:/aluq dO |sa;1\ega|t|vebar;d th(;ﬁrst zc};\snnl/e ter:_gen- rable nonlinearity of the form¥|2/(1+|¥|?). Then the sta-
Y"i ue IIS fz ')\ OnhS' era va uet gwlele f° an Oczt‘ n+ OO'S bility criterion (8.19 holds ford=1,2 for all >0, whereas
interval, f(») changes monotonically from-< 1o ' for d=3, it holds only for certain frequencies> w. In

passing through zero once. We defing, to be the value of ; ; ; : -
N\ at which f(\,;n)=0. Certainly,\ ;, represents the mini- ngr]tlcularwcr is the point whereQ(w) is a local minimum

mum value of the numeratdu|L,|u) of Eq.(8.7), subject to
the constraint{u|¥,)=0 and(uju)=1. It follows that if
Amin=>0 the solitary waveW (r) is stable and if\ <O,
there exist a energy conserving perturbation which grows For a nonlinear Dirac type of equation, with a linear spec-
with time and¥, is an unstable solution to the GNLSE. trum which is unbounded from below, the derivation of a
Sincef(\) is a continuous and monotonic function, the signstability criterion analogous to E48.15 is more problem-

of Nmin IS determined by the following consideration: If atic. Although an eigenvalue condition of forf8.7) can be
f(0)>0, then\ ,,<<0. If f(0)<O0, thenA;,>0. In Fig. 20  obtained, a mathematically rigorous reduction of this eigen-
we illustrate this graphically. An alternative but equivalentvalue problem to a stability criterion of forii8.15 requires
expression for stability follows from the observation that  certain assumptions about the role of the negative continuous

B. Solitary wave stability for the nonlinear Dirac equation



57 OPTICAL SOLITARY WAVES IN TWO- AND THREE- ...

spectrum of the Dirac operators. We delineate these assump-
tions below and provide numerical evidence for their valid-

ity.
Consider the perturbed spinor field

W (r,t)=W,(F)+ sV(F,t), (8.19

whereV, is a solution to Eq(2.7) and sV <W¥,,. Here, we
consider the generalization of the 1D soliton solutiondto

2313

[O1+(B+4N UD) U+ (— dy+ 6N Ugvo)T =10,
(8.24h

[O2— (B—4N"v3)]T + (95 + 6N Ugvo)u=—1U,
(8.249

[O1— (B+4N'UD)TU+(—dy— 2N Ugv)v=T.
(8.240

dimensions, which corresponds to includiag/dy? in two
dimensions and’?/dy?+ d%/dz% in three dimensions. This
equation arises from the two fold symmetry point of the
Brillouin zone, and is common to all of the crystal symmetry
groups. Inserting Eq(8.19 into Eq. (2.5 (with two trans-
verse dimensionsand keeping only terms up to first order in
sV, we obtain the equations.

From the conserved quantit@= [d%(¥T¥)=const, the
condition for an energy conserving perturbation can be writ-
ten as

f d9F(uou+v,0)=0. (8.29
Equations(8.24) can be compactly reexpressed in terms of

_iSE. — 'E2 SE* ' 2 op* —
108, =L10B N EGOET + 1,08, + N |Bol“0E; the two-component spinor fields! = (u,7) and¢)=(u,v):

(8.20a
and Migr=ioye, (8.263
— OB, =L* 6E,+ N EX SE5 + L% 0B, +\'|E|26E . Moo= —ioyd;. (8.260
(8.20h
Here
Here
, O+ (B+4N'U2)  —dx+6N"Ugv,
Ly=idy+ dyy+ dppt S+4AN'|Ey|, (8.213 o — N
LT Ty e [Edl My Iyt BN Uy Op—(B—4N"0]
L,=B+\'E;, (8.21b (8.273
and \'=2a/3. Separating the real and imaginary parts ofgnd
Eo=Uytivy, 6E;=u;+ivy, SE;=uUstiv,, and defining
the four-component spinor fieldy'=(v;,u;,v,,U,), Eq. A O,—(B+4N'U2)  —dx—2N'Ugv,
(8.20 can be expressed as M= , . 5
dx—2N'Uguy O+ (B—4N"12)
M Syr=y Sy, (8.223 (8.27H

If we assume solutions of the form,(F,t) = ¢1(F)sin(Qt)

h
where and ¢,(r,t) = ¢,() cost), then Eqs(8.26) become
I O ~ ~
and Modo=0, (8.280
o Bl V.V, where we introducedd,=ioy¢,, M,=o,Moo,, and
M= N (8220  M;=—M;. The operatordi, andM, are defined as
Bl O V, =V

A ) . My=—[io,dxt dyyt dpt 6+ Bo,+ 3N V(] b0)],
HereO=(1+ ) Oy/2+ (1 - 5,) 0212, Vi =\ ($loxbo) o, oo i " (8.204
and  V,=2\'[$fosbo— (doba) or+ i(dloxbo)ay]. &) -
=(uy,v,) and the operator®, andO, are defined as Mo=—[ioydy+ dyy+ d,,+ 6+ ,Bcrz+)\'V(¢>:§,¢>o)].
(8.290h
O1=dyy+ dy+ S+5N U+ 3N 02, (8.233
vty e ° ° andV(¢! ,¢.) is given as

V(gL bo) = (dioxdo) oxt (dla,do) o+ 2(dl o).
(8.30

Oy=dyy+d,+ +3N'UZ+5N"v5.  (8.23D

Introducing the new set of variables=u; +u,, U=u;—Us,

v=v.+v,, andv=v;—v,, EQ.(8.22 can be written as

[O2+(B—4N"v3)Jv+(dx—2\"Uguo) U= 1,
(8.243

Here ¢, satisfies the nonlinear wave equation

[i OyOxt dyyt dyt o+ Bo,+ za(¢g¢o)]¢o: 0.
(8.31)
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My M,
0.00275 0.00246
0 (zero-mode) 0 (zero-mode)
-0.00747
-0.197 -0.197

FIG. 21. lllustrated are the spectra of the operafdrsand M,
for the 1D gap soliton case. Both operators exhibit a negative co

tinuum. M, has a zero eigenvalue corresponding to the usual Gol
stone mode and a negative bound state-8t007 47. TheM , op-

erator has no negative bound states, and the lowest bound solution
has an eigenvalue zero, for which the eigenfunction is the gap soli

ton solution¢,. Herea=+1 and3=0.1.

For concreteness, we consider the case-2a/3>0. We
first examine the spectra dfl, and M, separately. It can
easily be verified that the linear part of the operatdrsand
M, exhibits both positive and negative continua, wherea:
the potentialV(¢! ,¢,) is a positive definite operatoM ;
has d-fold degenerate eigenfunction¥;¢,, j=x,y,z
(d=1,2,3) with zero eigenvalue, corresponding to the usu
translational(Goldstong¢ mode of the solitary wave. In the
squtiond;g: (ug,v,), Uy has one node ang, is nodeless. It
follows that the translational modeé;u, has two nodes and
Vv, has one node. In analogy with the Satirger opera-
tor, we expect that a bound staté=(u,v) of the operator
M, with a negative eigenvalue exists, wherdas one node
andv is nodeless. The operatdi, has a zero eigenvalue
corresponding to the solutiap, . In analogy with the Schro
dinger operator, we expect thit, has no negative eigen-
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Q4 =[6—(Kj+K) = VB +K;]2.

In the presence of the potential(qsg,qbo) the operator

MOM , does not contain a negative continuum, and may have
only a finite number of discrete negative eigenvalues corre-
sponding to localized states. In other words, all perturbations
corresponding to extended states resultiA>0, and we

only have to consider the negative bound states. In what
follows, it is convenient to denote negative continuum states

of the operatord/i, andM, as the subspad8. We refer to

(8.33

gﬂ"le orthogonal complement of this subspace by the symbol
G°.

In the subspace for whichp,|$,)=0 we can define the
inv

inverse of the operatavi,. Accordingly Eq.(8.32 can be
reduced to the form obtained for the GNLSE:

o (1M 1)
(pal (M) ")

Here we only consider perturbations, that are spatially

(8.39

?ocalized, since we know from E@8.32 that any extended

perturbation leads t6)?>>0. This can also be seen from the

Jact thatM,=M,—2\"V(¢!,¢,) and the expectation val-

ue becomes (| Myl p1)=(cbs|Mo| 1) —2N"(¢1|V(y,
o) 1). The eigenfunctions for the negative continuum

correspond to extended states so that for any perturbation
spanned by the negative continuum of the operftgr, the

corresponding expectation valujeﬁﬂﬂﬂd)l) is also nega-
tive. This follows from the fact that the expectation value
(h1|V(d],do)| 1) is positive. The lowest bound state of

the operatoiM, corresponds to the eigenfunctiah,, with
zero eigenvalue. ConsequeniW, has no bound state solu-

value bound states. We have numerically verified these extions with negative eigenvalues in the subspagg| ¢;)=0.

pected properties of the operatdfs, andM, , by expanding

On the other hand, the operativt; has at least one bound

their eigenfunctions in terms of the complete orthonormaistate with a negative eigenvalue. Therefore the sig)of
basis functions used in the finite element analysis. The eigemwill be determined by the expectation value(ef;|M | ¢1).

values and eigenvectors of the resulting finite-dimensional

In general there are three distinct cadgstf the operator

matrix are then found by standard methods. To give a nUfj, has no bound states with negative eigenvalues, then the

merical example in one dimension, we consider the param-

etersB=0.1 andé=0.0975(near the upper band edgét is
found that in addition to the negative and positive continua
there is only one negative eigenvalue bound state of the o

eratorM, at

solitary wave is stable(ii) If M, has more than one bound
state with a negative eigenvalue, then the solitary wave is
unstable. This follows from the fact that it is always possible

, , Ro construct a perturbatiogh; as a superposition of the nega-
—0.00747, and no negative eigenvalue boundiye pound states which also satisfies the constraint

states of the operatdd , . In Fig. 21 we illustrate the spectra (4 | 4.y=0. (i) If M, has precisely one negative bound
of the operators for one dimension. Similar results are foun tate, then the stability of the solitary wave reduces to a

for the 2D case.
Equations(8.28 may be combined, as in the GNLSE
case, to give

MoM by =02, . (8.32

The solitary wave solution is unstable if there exists an

eigenfunctiong, of Eq. (8.32) with negative eigenvalu?

in the subspacég,|#,)=0. Now it can be easily shown that
the linear par(settingV=0) of the operatoiM ,M is posi-
tive definite, by considering solutions of the foef". The
continuous spectrum d¥l M is given by

stability criterion similar to that obtained in the NLSE. We
consider casgii) in more detail below.

The minimum value of the numerator in E&.34) within
the subspacég,|¢1)=0 can be found by solving the spec-
tral problem

Mipri=Nd1+ad,, (8.35

where\ and « are Lagrange multipliers, introduced to en-
force the constraintéep,| o) =0 and{¢4|$,)=1. We now
expandg, and ¢, in terms of the complete set of eigenfunc-

tions {¢,} of M,. Using the fact thaip,, ¢; €G°, it is
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plausible that the eXDanSiOWﬁo=2n<¢o|$n>5n and The first one is the integrable massive Thirring model
¢1:a2n[<5n|¢o>zn/()\n_)\)] contain only those values (MTM), defined by the nonlinear wave equation

of n for which M, é,=\,&, and\,, is not part of the nega- «
tive continuum ofM,. We denote this restriction on the 191005+ Moy + E[(lﬁ*lﬁ)—(lﬂTUzlﬂ)Uz])l#:O-
summation oven with a prime. The orthogonality condition (8.41)

of ($1] po)=0 then yields
|<,J) P >|2 Here it is known that stable localized soliton solutions exist

_ N (@nl@o)l” of the form[53]

f()\)—Z h) 0. (8.36
sechiax) [ 1

—iwt

As in the GNLSE, the problem is reduced to determining the = \2(m— )/« > ,
quantity, A in, defined by the conditiorf(\ ,,)=0. Once 1+ b? tanf(ax)| btant(ax)

again\ i, is the minimum value of the quantityp,| M| ¢;) (842

subject to the relevant constraints. We denote the negative, ... _ JM?= &% andb=(m—w)/(m+ ). For these
discrete eigenvalue dfl; by \,. \; is absent in the sum- solutions,
mation (8.36) since it corresponds to the translational mode

which is orthogonal tap, . Since the functiori(\) is mono- 8 [lm—w

tonic in the interval §4,\,), the sign off(0) is determined sz dx(yly)= ;arcta ol (8.43
by the sign of\ ,;,. If f(0)<<0 then\ ,;,>0. If f(0)>0 then
A min<O. Following the analysis of the GNLSE, we write

Here w takes the place ofs in Eq. (8.40. Clearly,
dQ/dw<<0 for —m<w<m, indicating stability of solitons

Knl #o)l® ~
f(o)=> -~ mrol o M"Y ). (8.3 throughout the gap.
©) 2 An (@ol(M2) 7l o). (83D The Gross-Neveu model is defined by the equafks]

In the last equality in Eq(8.37), we have made use of our 0t i 0D — Mot t -0 (84
assumed orthogonality ap, to each of the eigenfunctions ligctioyd=moct l(yop)oeliy 844

&y in the negative continuum dfi,. By virtue of this or-  Here the soliton solution takes the fofis3]
thogonality, the summation above can be replaced by an un-

restricted sum, yielding the spectral representation of the op- sechiax) 1 .
eratorM ;. Taking the derivative of E¢(8.31) with respect p=V2(Mm—- o) k——F—— e,
t . 1-bPtant?(ax)| b tanh(ax)
0 & we obtain
(8.45
|\7|1a¢0 —¢o=0. (8.39¢  where a and b are the same as in the MTM, and
90 Q=2(m-w? Y w. This soliton is stable for the region
- ; ; 0<w<m, in agreement with numerical studigs4]. An ex-
Substituting Eq(8.38 into Eq. (8.37) yields tension of the Gross-Neveu model 8+1) dimensions is
Ado\ 1 Kol bo) the Soler model. In this case an analytical expressioQfr
f(0)=<¢o 75 > =508 (8.39  not available. Nevertheless, it has been shown numerically
thatQ exhibits a local minimum as a function af at some
This leads to the necessary condition for stability that frequencyw.,. ConsequentlygQ/dw changes sign atb,
and the soliton is unstable fab> w,. In both numerical
aQ [54] and analytical55] studies of the Soler model, this result
550 840 \as confirmed.

In the case of a photonic band gap, the 1D gap soliton is
whereQ=(¢,|$,). The stability criteria can be summarized believed to be stablg5]. We may generalize the 1D gap
as follows:(i) If the M, operator has more than one negativesoliton to two- and three-dimensional gap solitary waves by
eigenvalue corresponding to a bound state, then instabilitgstimating the conserved quantlfyfrom the variational re-

takes place irrespective of E(8.40. (i) If the operatorM,  Sults of Sec. IV. This gives the dependence(@fon the
has only one negative bound sate, then the solitary wave @etuning frequencys. In Fig. 22 we plot the quantityQ
stable provided the conserved quantity Q satisfies conditioM€rsus the detuning paramei@iffor d=1, 2, and 3. In both
(8.40. For a negative nonlinear Kerr coefficient, condition d=1 and 2,Q,= (¢Q/96)<0 for the entire band gap re-
(8.40 must be replaced b§yQ/35>0, due to the fact that the 95'02- 5<nge_v%r 1‘th 0_|=f,b_|$a_ is |oozltlv§| getwee_n
: v v or +, indicating instability in upper band edge region

operators are now defined &, =M, andMo=M,. and stability in the rest of the band gap. This behavior of the
total energy is reminiscent the case of the GNLSE with a
saturating nonlinear potential. For the symmetric\B0soli-

Before discussing the stability of solitary waves in a PBGtary wave a local minimum also exist for the quant@ybut
material, we illustrate the stability criterion given by Eq. is now much closer to the band edge, in which stable solu-
(8.40 with some widely studied nonlinear spinor equations.tions may be possible for most of the band gap region. In

C. Comparison with other models
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L B B A S S(a) d<2p/s
[ 18
L 1er /Sd . /\
A i i cd
: i id // 1 o
& ! ] I
& 16 | / 1<
& r / 1 &
) < ] B d>2p
E 1.4 _\,\‘__/// : "E\, >cp/s
< - - {1 = FIG. 23. Plotted is the action functiong{a) of the generalized
12 - Tee2d 1 nonlinear Schidinger equatiofGNLSE) with respect to the scal-
T e \] ing parametern. The functionalS(a) has a stable minimum when
T d<2p/s, and an unstable maximum whe>2p/s. For the stan-
1_1 05 0 05 10 dard nonlinear Schatinger equationg=p=1), the solitary wave
5. 5 5, is stable ford<2.

FIG. 22. Plotted is the dependence of the conserved quaptity W'th the c_on_ser_ved quantip=/d . r|‘I’| - Our "”e‘?‘r sFab|I-
for d=1 (solid line, left scalg d=2 (dotted line, right scale and ity analysis indicated that the solitary wave solution is stable

d=3 (long-dashed dotted line, right scalen the detuning param- Whend<2p/s. This condition can also be deduced from the
eter . The stability conditionyQ/d5<0 is satisfied fod=1and 2 ~ action functional by considering a one-parameter scaling
throughout the band-gap region, whereasder3, stable solutions ~ form ¥ =¥ (x/a)/a%? of the solitary wave, which preserves
may only exist fors> &,,. Hered,, is the detuning for whici) has Q. Substituting this scaling form into E¢8.46 yields
a local minimum.
|

Sec. Il we showed that an effective nonlinear Sclimger S(@) a2p tols ads’ 8.47
equation describes gap solitary waves near the band edge.
For d=3, the NLSE solitary wave solution is unstable. Thiswherel, |,, andl; are positive numerical constants. The
is consistent with the behavior @;. For d=2, the con- linear stability condition is equivalent to the statement that
served quantity can be approximated near the upper bani#fS/da?|,—,>0. This corresponds to the requirement that
edge asQ=c;+c,(B8—6), wherec; andc, are positive ds(2p—ds)l;>0. Sincedsl;>0, the condition for a local
numbers. Unlike the case of the NLSE in two dimensionsminimum of the functional is that (@—ds)>0. This is ex-
for which Q is independent ob, in the 2D PBG system we actly the same condition obtained from the linear stability
have Q;<0. The apparent stability of the 2D gap solitary analysis. It can be seen from Fig. 23 that @ 2p/s, S(a)
wave is a new prediction of our stability criterici®.40. has a stable minimum, whereas fir2p/s the extremum
Finally, our stability criterion suggests the existence of stablgooint corresponds to a maximum, in which case the func-
three-dimensional solitary waves deep inside the photonitional S diverges asa—0. Physically, the instability takes
band gap in a Kerr medium, a new result which may not beplace whenever the nonlinear potentifti®f|¥|%S over-
extrapolated by simple consideration on the nonlinear Schraccomes the kinetic energy terfidf|V¥|?P. In general soli-
dinger equation. It is of importance to extend this study totary waves are stable when the nonlinear potential is
the case of a saturable nonlinearity and to determine the sthounded, as is the case for a saturable nonlinear susceptibil-
bility of 3D “light bullets” throughout the PBG for this, ity. Another stabilization mechanism is the inclusion of
more realistic, situation. higher order derivative terms in the kinetic energy term. For
example in the NLSEg=p=1), if the nonlinear refractive
index is replaced by an expression of the form
a1|W)%— ay|W|* (a12>0), then the action functional scales
as

We conclude this section with a discussion of the relation-
ship of linear stability analysis and the scaling and minimi- 1 [P
zation properties of the action functional. A precise connec- S(a)= —tol——+ . (8.48
tion exists for nonlinear wave equations with a positive a a a
dgfinite cont?nuous spectrum S.UCh as the nonlinea_r “SChrcHere all thel,---1, are positive humbers. The extremum
dinger equation. However, for Dirac-type wave equations eX¢qnition now becomes
hibiting an unbounded negative spectrum, this equivalence

D. Relationship between stability and the minimum property
of the action functional

appears to be lost. We start with the GNLSEdrdimen- 2
! . . . d°S 5 )
sions. The stationary solution to E®.1) is an extremum of — =(2d—d?)lz+4(d*—d)l,. (8.49
the action functional Jda”| _,
1 It is easy to verify that 3D solitary waves are stable in this
— dz 2p 2_ 2s+2
S f d r( [V [+ o] V] (2s+2) V] ' medium provided that,>15/8. Moreover, in a saturable me-

(8.46 dium with a nonlinear refractive index of the form
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f(|¥|?)=|P|%/(1+]|WP|?), stable solutions exists in general S, S,

for d=1 and 2. Ford=3, stable solutions are possible only > 7aib

above some critical frequeney> w, [52]. A= Ja a -0 (8.54b
Clearly, there is a direct connection between the mini- N RS, PSy : '

mum property of the action functional and stability of the —_—

solitary wave solutions in the nonlinear Schimger type dbaa  gb? ab=1

equations. This connection can be made more precise by
considering a perturbation of the fori—W,=(u+iv) in  In actual fact, #°Sx/da?|,p=1=0, *Sx/db?|ap=1

the functionalS. Collecting up to quadratic terms inandv, =\ >0, andA=—1 ﬁ,L<O indicating that the solitary wave
we obtain the second variation &f is a saddle point in the parameter spaaebj. On the other
hand our linear stability analysis suggested that the solitary
5zs:f d% (vLyv +uL,u). (850 Wwave is stable in two d_im_ensions. Cl_early, th_e two me_thods
are not equivalent. A similar conclusion applies tesoli-
i . tary wave.
Here, the operatork,,, are defined as in Sec. VIIIA. In In summary, for solitary waves where the linear differen-

2 - .
order to have5°S>0, both terms in Eq(8.50 must be posi-  {jg| gperator which enters the nonlinear wave equation is not
tive definite in the subspaq(ej|\lfo_>_=0. Since we already ositive definite, scaling arguments are not a reliable indica-
know that in this subspads, is positive definite, a sufficient tor of stability and careful consideration of the time-

condition for stability is thatu|L,|u) is positive definite. gependent linear stability is essential.
This condition leads to the same spectral eigenvalue problem

defined by Eq{(8.8) which in turn leads to the stability cri-
terion (8.15. IX. DISCUSSION AND CONCLUSIONS

In the case of spinor fields satisfying a n(_)nlinear Di.rgc In this paper, we have demonstrated the existence of
type of equation, we show below that the linear stability siape solitary waves in 2D and 3D nonlinear photonic band-
criterion and the minimum of the action functional are not ap materials exhibiting a nonresonat) Kerr type of non-

equivqlent. .Consider the secqnd variation of the functionaﬁnearity_ Unlike the 1D Bragg gratings studied by others, the
S defined in Eq(7.9). Expanding¥ =W+ 6V and keep-  pigher-dimensional periodic structures exhibit multiple sym-

ing quadratic terms i®Y¥, we obtain metry points in the Brillouin zone, resulting in at least two
distinct types of solitary wave solutions. Solutions of the first

523L:J ddr(¢’{ml¢,1+};2‘fmogz)_ (8.51)  type, which are associated with a twofold symmetry point,

break the full symmetry of the crystal under rotation and

~ ~ i ) exist only for a positive Kerr coefficient fat>1. Solutions

Here the operatordl, andM, are prZeC|ser those in EGs. of the second type, which are associated with a higher order
(8.299 and(8.29h. In order to make5°S, positive definite,  symmetry point, exist for both positive and negative Kerr
the operator coefficients. Solitary waves of the first type can travel at any

velocity from zero up to the average speed of light in the

medium. This can be seen by applying a Lorentz boost to the
(8.52 corresponding stationary solution. For a purely 1D system,

the moving soliton experiences a Lorentz contraction. In

must be positive definite. Clearly this is impossible, since thél>1, the moving solitary wave experiences additional trans-
operatorM  exhibits a negative continuum. The eigenvalueVerseé expansion due to the decay of the wave amplitude in

problem arising here differs significantly from the one ob-the transverse direction. In general, as the soliton velocity
tained in linear stability analysis. Our earlier time-dependentcréases, the average frequency of the soliton moves away
stability analysis led to a spectral problem for the operatof"om the center of the PBG and the total soliton energy de-
=~ . . . . creases. If the average frequency is outside of the PBG, such
M= oM which does not exhibit a negative continuum. In _ . . . e

eneral, the action functiona$, , exhibits a saddle point solitons are dggenerate n f_requency with propagating linear
9 ’ e AL = ; . electromagnetic modes. This leads to couplings not included
instead of a minimum. As an illustration, consider the scalin

of the formW =W (x/a.y/b)//ab for 2D gap solitary wave. %n our model, and may in turn lead to instability of the soli-

. . ; . tary wave.
For theX solitary wave the action functional can be written Near a photonic band edge, our solitary wave solutions
as (@=+1) '

are well described by a simple nonlinear Sctinger equa-
tion. Deeper inside the PBG, these solitary waves probe the
Sy(a,b)= 'Ly_ '_X_ '& (8.53 full structure of the nonlinear Dirac equation obtained in the
’ 2 ab’ context of the SVEA. It is well known that fat=3, solitons
of the NLSE are unstable. This is consistent with our near
where, l,,, I, andly_ are positive numbers. In order to band edge results. However, deeper inside the PBG, we ob-
have 6°S, >0, the following conditions must be satisfied: ~ tain the entirely new prediction that 3D solitary waves are
stable with respect to small perturbations. In addition we find
9%Sy stable solitary wave solutions throughout the PBGderl
> >0, 7,=a,b, (8.543 and 2.
I ab=1 The solitary wave solutions we have obtained correspond
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to ultrashort, high intensity light pulses. Near the center of asolitary wave solutions provide a valuable, qualitative start-
PBG with a gap to center frequency ratlow/w,=0.10, ing point for more detailed studies. Our studies have been
these nonlinear pulses have a spatial extent of only severdimited to materials with () nonlinear response. It would
optical wavelengths. For 3D light bullets in a fcc photonic be of interest to extend these studies to PBG materials with a
crystal, the total energy of the pulse is on the scale of picotarge y(?) responsd56], as well as to include the nonlinear
joules. If such a pulse were to move in vacuum, the corresaturation effects which are inevitable at high light intensi-
sponding peak intensity is on the scale of GWicrin this ties.

sense, our gap center solitary wave corresponds to a conm optical fibers, soliton propagation is well described by the
pressed version of the pJ solitons envisaged in fiber opticlassical nonlinear Schdinger equation. The quantum ver-
telecommunication network4.2]. As the average frequency sion of the NLSE can be solvg®7] by the Bethe ansatz

of the solitary wave is chosen closer to the photonic bandnethod[58]. It would be of interest to determine the quan-
edge, the compression of the pulse is relaxed, and it can havem correlations of photons comprising the gap solitary
an arbitrarily large spatial extent. wave, and the possibility of quantum noise reduction. Stud-
In practice, the speed of propagation of the light bulleties of this nature have already been performed for optical
through the PBG material will be limited by the speed of thefiber solitons[59].

nonlinear optical response in the material. For a pulse whiclFinally, it is of considerable importance to study the cou-
extends over only a few optical wavelengths, in a materiapling of an external laser pulse to the predicted soliton
with picosecond nonlinear response time, the maximum solimodes of the PBG material. Studies of how to launch a gap
ton velocity may be considerably less than the average speembliton have been restricted so far to 1D Bragg grat{gs.

of light in the medium. A proper description of this effect It would be of considerable interest to understand the behav-
would require the inclusion of retardation effects in the non-ior of a general time-dependent laser pulse incident on PBG
linear response of the material. Nevertheless, our analysisaterial in regard to pulse reshaping effects, bistability ef-
indicates that while PBG materials are “emptier than physi-fects, and possible chaotic behaJi6d]. In view of the large

cal vacuum” with respect to classical, linear, wave propagavariety of solitary wave solutions predicted in higher-
tion, they are quite rich in nonlinear electromagnetic wavedimensional PBG materials, such studies may be particularly

effects. fruitful.
Our results indicate a number of avenues for further research.
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